PCAN-Router FD 概要

Slide 1

□ CAN FD 2ch プログラマブル・コンバータ

- □ CAN FD ISO, CAN FD non-ISO, CAN 2.0 A/B (25 kbit/s ~ 1 Mbit/s)
 - アービトレーション: 25 kbit/s ~ 1 Mbit/s
 - データ・フィールド: 25 kbit/s ~ 12 Mbit/s

□ ファームウェア書き換え可能

- GCC ARM Embeddedを使用したWindows®開発パッケージ、フラッシュ プログラムおよびプログラミング サンプル
- プログラミング・サンプルを含むライブラリ
- PCICPCANインターフェイス接続にてCANを介して書込み(書込みソフト: PEAK-Flash)
 (PCANインターフェイスは別途購入が必要)
- □ コネクタ(2種類)
 - 2個の9ピンD-Sub(オス): IPEH-002214
 - 1個の10ピンPhoenix 端子台: IPEH-002215
- □ 用途:
 - CAN と CAN FD 間のコンバータ
 - CAN / CAN FD シミュレーション(シグナル発生器)
 - その他 プログラミング次第

PCAN-Router 概要

□ CAN 2ch プログラマブル・コンバータ

- CAN 2.0 A/B (40 kbit/s ~ 1 Mbit/s)
- □ ファームウェア書き換え可能
 - Cコンパイラ: Visual Studio Code(Microsoftから無料で入手可能)
 - サンプルプログラム
 - PCICPCANインターフェイス接続にてCANを介して書込み(書込みソフト: PEAK-Flash)
 (PCANインターフェイスは別途購入が必要)

□ コネクタ(& アイソレーション)で3種類

- 2個の9ピンD-Sub(オス): IPEH-002210
- 2個の9ピンD-Sub(オス)アイソレーション(CAN2のみ): IPEH-002211
- 1個の10ピンPhoenix 端子台: IPEH-002210-P

□ 用途:

- CAN 2ch 間のコンバータ
- CAN シミュレーション(シグナル発生器)
- その他 プログラミング次第

テクニカル・スペック (1/2)

Slide 3

	PCAN-Router FD	PCAN-Router
マイクロコントローラ	NXP LPC4078 (ARM Cortex M4F 120 MHz)	NXP LPC2194/01 (ARM 16/32-bit ARM7TDMI-S 60 MHz)
メモリ(オンチップ)	496 kB / ROM (flash), 96 kB / RAM (SRAM)	240 kB / ROM (flash), 16 kB / RAM (SRAM)
アドオン・メモリ	4 kB EEPROM + 4 MB SPI Flash	32 kB EEPROM
CAN 2 ポート	CAN FD ISO, CAN FD non-ISO, CAN 2.0 A/B	CAN 2.0 A/B
CAN ビットレート	アービトレーション: 25 kbit/s – 1 Mbit/s データ・フィールド(CAN FD): 25 kbit/s – 12 Mbit/s	40 kbit/s – 1 Mbit/s
電源	DC 8 ~ 30 V	DC 8 ~ 30 V
消費電流	max 100 mA / 12V	max 70 mA / 12V
サイズ	70 x 55 x 24 mm (L x W x H)	70 x 55 x 24 mm (L x W x H)
重量	IPEH-002214 (D-Sub): 100 g, IPEH-002215 (Phoenix): 89 g	100 g
動作温度/保存温度	-40 °C - +80 °C / -40 °C - +100 °C	-40 °C - +80 °C / -40 °C - +100 °C
湿度	15~90%(結露なきこと)	15~90%(結露なきこと)
IP 保護クラス	IP20	IP20

テクニカル・スペック (2/2)

Slide 4

	PCAN-Router FD	PCAN-Router
ガルバニック・アイソ レーション	なし	IPEH-002211 の CAN2 のみ対応(500V まで) (IPEH-002210, IPEH-002210-P は非対応)
RS-232 (RxD, TxD)	全機種対応 (2個のデジタル入力と切替: RxD / Din1, TxD / Din2)	IPEH-002210-P のみ対応 (IPEH-002210, IPEH-002211 は非対応)
デジタル入力 (Din)	max 3, Low-active, max level Ub (1個は占有、2個はRS-232とハンダ付ジャンパーに よる切替: RxD / Din1, TxD / Din2)	max 1, Low-active, max level Ub (IPEH-002210/11 対応、 IPEH002210-P はなし)
デジタル出力 (Dout)	Low-side, max 600 mA	なし
CAN 終端抵抗	ハンダ付ジャンパーによる	なし
ステータス表示	2 x デュオ LED (緑・オレンジ)	2 x デュオ LED (緑・オレンジ)
EMC	Directive 2014/30/EU, EN61326-1: 2013-07	Directive 2014/30/EU, EN61326-1: 2013-07

ピンアサイン

PCAN-Router FD

IPEH-2214 (D-Sub9 x 2)

	CAN1	CAN2
1	+5V opt.	+5V opt.
2	CAN1_L	CAN2_L
3	GND	GND
4	RxD (Din1)	-
5	Shield	Shield
6	Boot	-
7	CAN1_H	CAN2_H
8	TxD (Din2)	Din0 / Dout
9	Ub1	Ub2

IPEH-2215 (10ピン Phoenix端子台)

	端子台
1	Ub
2	GND
3	CAN1_L
4	CAN1_H
5	CAN2_L
6	CAN2_H
7	Boot
8	Din0 / Dout
9	RxD (Din1)
10	TxD (Din2)

IPEH-002210

(D-Sub9 x 2)

	CAN1	CAN2
1	+5V opt.	+5V opt.
2	CAN1_L	CAN2_L
3	GND	GND
4	(予約済)	(未使用)
5	Shield	Shield
6	Boot	(未使用)
7	CAN1_H	CAN2_H
8	(未使用)	Din0
9	Ub1	Ub2

PCAN-Router

IPEH-002211 (D-Sub9 x 2)

	CAN1	CAN2
1	+5V opt.	+5V opt.
2	CAN1_L	CAN2_L
3	GND1	GND2
4	(予約済)	(未使用)
5	Shield	Shield
6	Boot	(未使用)
7	CAN1_H	CAN2_H
8	Din0	(未使用)
9	Ub1	(未使用)

IPEH-2210-P (10ピン Phoenix端子台)

	端子台
1	Ub
2	GND
3	CAN1_L
4	CAN1_H
5	CAN2_L
6	CAN2_H
7	Boot
8	(予約済)
9	RxD
10	TxD

□ PCANドライバのインストール

下記のURLからダウンロードし、pcanrouter_fd.ziptem_Driver-Setup.zipを解凍
 PeakOemDrv.exeを実行してインストール

https://www.peak-system.com/quick/DrvSetup

- □ Cコンパイラのインストール
 - 下記のURLからダウンロードし、PEAK-DevPack.zipを解凍
 https://www.peak-system.com/quick/DLP-DevPack

□ プログラム開発(サンプルプログラムを元に)

• ¥Hardware¥PCAN-Router¥Examples

(PCAN-Router FDの場合は、¥Hardware¥PCAN-Router_FD ¥Examplesになります。)

□ パッケージ内容

Build Tools/

ビルドプロセスを自動化するためのツール

Compiler/

サポートされているプログラマブル製品のコンパイラ

Hardware/

いくつかのファームウェアの例を含む、サポートされているハードウェアのサブディレクトリが含まれています。独自のファームウェア開発を開始するために例を使用してください。

- PEAK-Flash /
- CANを介してファームウェアをハードウェアにアップロードするためのWindowsツール。
- ディレクトリをPCにコピーして、ソフトウェア(*.exe)を起動します。
- SetPath_for_VSCode.vbs

Visual Studio Code IDEのサンプルディレクトリを変更するVBScript。

□ 独自のファームウェアを作成する手順

1.ローカルPCにフォルダを作成します。ローカルドライブの使用をお勧めします。

2.解凍したPEAK-DevPackディレクトリ全体(すべてのサブディレクトリを含む)をフォルダにコピーします。 (インストールは一切必要ありません。)

3.スクリプトSetPath_for_VSCode.vbsを実行します。このスクリプトは、Visual Studio Code IDE(https://code.visualstudio.com/)のサンプルディレクトリを変更します。

その後、すべてのサンプルディレクトリには、ローカルパス情報を含む必要なファイルを含む.vscodeというフォルダがあります。

4.Microsoftから無料で入手できるVisual Studio Codeを起動します。

5.プロジェクトのフォルダを選択して開きます。

例:d:¥ PEAK-DevPack ¥ Hardware ¥ PCAN-Router ¥ Examples ¥ 01_ROUTING

6.Cコードを編集して、Terminal > Run Taskメニューから、make clean、make all、または単一ファイルの コンパイルを呼び出すことができます。

7.MakeAllを使用してファームウェアを作成します。

ファームウェアは、プロジェクトフォルダのサブディレクトリoutにある*.binです。

Slide 9

ライブラリ

PCAN-Routerのアプリケーションの開発は、バイナリファイルであるライブラリlibPCAN-RouterGNU * ys.a (*はバージョン番号を表します)によってサポートされています。このライブラリを使用して、PCAN-Routerのすべてのリソースにアクセスできます。ダイライブラリは、各サンプルディレクトリのincサブディレクトリにあるヘッダーファイル(*.h)に記載されています。

Push SW を On (Boot ピンをHレベル)にした状態で電源を投入。PCAN-Router (FD)のLEDが、CAN1:オレンジ点滅、CAN2: オレンジ点灯となる。 PEAK-Flashを起動し、使用機種(PCAN-Router または PCAN-Router FD)を設定し、コンパイルして生成された bin ファイルを指定し書込み。

<備考>

PCAN-Router / PCAN-Router FDには、PCANインターフェイスお よびCANケーブルは付属していません。PCANインターフェイスは、 別途、購入が必要です。上記参考回路のCANケーブルは、販売し ていないので、作製が必要です。

ファームウェア書込み(PEAK-FlashソフトウェアによりCANを介して)

- □ PCANインターフェイスでPCと接続
- **D** BootピンをHレベルにし(1~10 kΩでプルアップを推奨)、電源を投入
 - LED: CAN1 オレンジ点滅、CAN2 オレンジ点灯
- □ PEAK-Flashを起動し、ハードウェアとbinファイルを設定し実行
 - 1. ¥PEAK-Flash をローカルにコピー
 - 2. PEAK-Flash.exe を起動
 - 3. [Next] ボタンをクリックします。
 - 4. [Modules connected to the CAN bus] ラジオボタンをクリックします。
 - 5. [Channels of connected CAN hardware] ドロップダウンメニューで、コンピュータに接続されたCANインターフェイス(PCAN-USB FDなど)を選択します。
 - 6. [Bit rate] ドロップダウンメニューで、CANバスで使用できる公称ビットレートを選択します。
 - [Detect] をクリックします。
 リストには、[PCAN-Router] が [Module ID] と [Firmware version]とともに表示されます。
 そうでない場合は、適切なnominal ビットレートでCANバスへの接続が存在するかどうかを
 確認してください。

- 8. [Next] をクリックします。
- 9. [Firmware File] ラジオボタンを選択し、[Select] をクリックします。
- 10. 対応するファイル(* .bin)を選択します。
- 11. [Next] をクリックします。
- 12. [Ready to Flash] ダイアログが表示されます。[Start] をクリックして、新しいファームウェア をPCAN-Routerに転送します。
- 13. [Flashing] ダイアログが表示されます。プロセスが完了したら、[Next] をクリックします。
- 14. プログラムを終了。
- 15. デバイスを電源から切り離します。
- 16. [Boot] と電源の間の接続を取り外します(Ub1、Ub2、またはUb)。
- 17. デバイスを電源します。

サンプル

PCAN-Router / PCAN-Router FD

- 1 ROUTING
- 2 EEPROM
- 3 TIMER
- **4 BOOTLOADER**
- **5 SIGNALS**
- 6 LISTENONLY
- 7 CAN TO SER ASCII

PCAN-Router FDのみ

- 8 SPI FLAHS
- 9 PEAK FLASH
- 10 CAN FD
- 11 FPU
- 12 POWER STATES
- 14 CPLUSPLUS
- 15 TX PAUSE
- 16 CAN ID FILTERS 17 HW VERSION

注意:

サンプル自体は上記の1~7が同様の構成です。ただし、PCAN-Router FD と PCAN-Router で、 関数・構造体等が異なるので、PCAN-Router用に作成されたCソースはPCAN-Router FDでは 動作しません。Cソースを修正し、コンパイルする必要があります。

- CAN1とCAN2間でルーティング。メッセージはそのままで変更なし。
- EEPROM使用法。
- 周期メッセージ送信。

ファームウェアからPCAN-Flashを起動する方法。PCAN-Flashソフトウェアとは 互換性なし(PCAN-Router FD: 互換性をとるには、9 PCAN FLASHを参照)。 シグナル修正。

リッスンオンリ。

CANデータをシリアルポートに転送。

- オンボードSPI Flashの基本的な使用法。
- ファームウェア実行時にPEAK-Flashソフトウェアの使用法。
- CANメッセージをCAN FDメッセージに変換。
- FPUを使用した浮動小数点演算。
- wake-up機能。
- C++を使用した例
- 送信の一時停止
- CAN IDフィルター
 - ハードウェア バージョン

