O
OTX Standardized Language for Diagnostic-and-Test Sequences SOﬂ: qg

e ———
e ———

Who needs OTX?

What is OTX? Where is OTX applied?

Problem / Situation

Process without OTX

Proprietary data - various data formats - media disruption

Typical Diagnostic Test Sequence

Standard format:
The OTX standard ISO 13209 proposes an open and standardized

format for the human- and machine-readable description of Inline / EOL Factory Factory After Sales
) — diagnostic test sequences Test Engineer fester fester fester
Request Seed from ECU() rn > g 9 : Vehiclo —
JL Specification Editor Test Engineer Specification
Editin
E— —-—— . System
CalculateKey(Seed) n—> Function Function Integration
¢ Specification Editor Test Engineer
Specification Realization Implementation Diagnostic test sequences:
SendKey() Sequences for diagnostic testing are utilized whenever automotive ECU =00
Specification Editor Test Engineer System

Development

Y Process with OTX components or functions with diagnostic abilities are being
Consistent workflow based on 1SO standard diagnosed, tested, reprogrammed or initialized by off-board test

equipment ECU Development
N o ocedu B cific algorithm. -

ECU Development

DEVELOP TEST

Context Concept in OTX

Diagnostic test sequences require access to contextual information e.g.
related to
- vehicle (model, engine type etc.)
Implementation - user (login name, access rights etc.)
- application (manufacturing, engineering etc.)

oTX

Start Flash Procedure

Specification Realization

During runtime, context information is treated like static, unchangeable
information.

Overview: OTX Extensions based on Part 3 of the ISO Standard

Overview OTX Core

Context information is declared as a context variable. Its value is set outside

OTX Document the OTX file. During program execution, it can be queried and evaluated.

o — Header information: DateTime Provides access to system time Core
p S - Links to other OTX ContextVariable_UserLogin:String ExecuteDiagService - {DiagnosticSessionControl} DiagCom Connecting to ECUs, creating and executing diagnostic services, analyzing communication EventHandling,
0 documents (import information) (otxIFD_DateTime.xsd) data Quantities, Core
> Global entities: DiagDataBrowsing Browsing functionality for reading data from the diagnostic database DiagCom, Core
- Global constants . ge . (otxIFD_DiagDataBrowsing.xsd)
o - Global variables Valldlty COncept in OTX EventHandling Support for the OTX event handling mechanism Core
- Global procedures (RIS
- : Flash Downloading and uploading flash data to and from ECUs DiagCom, Core
-c / l The validity concept is based on the Context concept. (otxIFD_Flash.xsd)
: HMI Exch finf tion via th hical interf) th h dial EventHandling,
E Signatures Procedures A validity is always true or false. (olFD. HVIlxsd) xchange of information via the graphical user interface (GUI) through dialogs and screens ventHandling, Core
- Parameter declaration Main(): Top level procedure It can be i18n Internationalization features, multi-language support and translation mechanism Quantities, Core
O - Parameter declaration - (CEAD T et
c - Exception handlin - a context variable of type Boolean Job Emulation of ODX Java Jobs by OTX test sequences DiagCom, Quantities,
o P : g - a composed logical expression resulting in true or false of e.g. (otxIFD_Job.xsd) S
(4v) Part 3 - omments several context variables. Logging Support for (Log4J-style) logging Core
njd extends the OTX Core with a set of additional standard / l \ _ N | (otxIFD_Logging.xsd)
()] libraries. Automotive-specific features are contained Standard Nodes Compound Nodes End Nodes Nodes in an OTX sequence can be bound to a validity and therefore contain Math Extended mathematical functions Core
OTX solely in Part 3 of ISO 13209. Furthermore, the list - Action - Group - Break several realizations. (I\)/TXIFD—Math'XSd) Executi t devi : ing phvsical val zi ts EventHandli
: . , : easure xecuting measurement devices service, measurin sical values, analyzing measurements EventHandling,
x Extensions of faxtensw'ns corr.lprlsclas .controllln.g mgasurem.ent - Loop = %(])ntlnue validity UserLogin : ContextVariable UserLogin == “Mueller” (otxIFD_Measure.xsd) J 9Py yang Quantities, Cc?re
|— equipment, internationalization, working with physical - Branch - o row Validity EngineType : ContextVariable Enginefype == “Diesel Quantities Handling of quantity data, with regard to Sl unit system, transformations between units, etc. Core
units, accessing the environment via external DLLs - Parallel - Teturn o (otxIFD_Quantities.xsd)
O and APIs, human machine interface (HMI) elements - Mutex group - lefminate ianes StringUtil Extended functionality for string handling Core
and other utilities. - Handler Signature Concept in OTX (otxIFD_StringUtil.xsd)

A signature describes an interface to a procedure. It equals a procedure
without a realization.

How do | use OTX?

Advantages of OTX Diagnostics - Use Cases for OTX

Diagnostic System Overview with OTX

Similar to nodes, procedures in an OTX sequence can be bound to a validity.

OTX in Application

The OTX format offers explicit support for a three-stage development of
test sequences.

Specification stage:

The overall sequence logic is developed at a descriptive, linguistic level.

This is helpful at early stages in the test sequence development process,
when most details for creating an executable test sequence are not known.

Intermediate stage:

The test sequence contains parts that are already executable;

other parts are still at the specification stage.

At any step in this process, the sequence can be saved and exchanged
in a valid format.

A runtime interpreter can execute the implemented parts.

Realization stage:

There are no more specification-only parts in the sequence.
The OTX sequence is now fully executable.

It represents an “executable specification”.

OTX Editor

~

ODX Authoring System

Tester Applications

OTX GUIs

OTX Runtime

Interface for Applications (API)

Base System with MCD Kernel / D-Server

Interface for Bus Systems

Vehicle Communication
Interface (VCI)

Instead of a procedure, the programmer calls the signature in an OTX sequence.

Depending on the validity, the corresponding procedure is executed.

In the OTX Core data model there is only one type of signature called
ProcedureSignature.

My Test_Procedure is executed when
- My_Signature is called
- and Validity_V1 is TRUE

Order additional copies: info.automotive @softing.com / www.automotive.softing.com

- The specification and implementation of test sequences -

are combined in one OTX document

Easy maintainability of OTX sequences thanks to the
separation of user interface, sequence model and data
Simple integration of extensive OTX libraries for reusable
sequences

Debugging possibilities support error search when
creating OTX sequences

Human- and machine-readable filing format for test
sequences (XML)

OTX can also be used outside of vehicle diagnostics;
other add-ons can be incorporated (invoking DLLs or APIs)
Simpler in-house sequence creation as the focus is on
application know-how, not on programming expertise
The high degree of flexibility in the OTX creation process
enables the use of even minor improvement potential
which can nevertheless represent considerable cost savings
The use of an ISO standard ensures a greater selection
of available software tools (manufacturer independence)
Long-term availability of validated diagnostic sequences
and thus the securing of diagnostic know-how

ECU standard tests

Protocol verification

HiL - Hardware in the Loop testing
Gateway testing

Onboard diagnostics (OBD)

ECU variant coding

ECU flash programming

ECU error memory

Guided fault diagnosis

ECU calibration

Assembly-aiding production processes
Test sequences for assembled systems
EoL - End of Line tests

Error analysis

Measurement data monitoring

Ensuring sequence order during production

© 2016 Softing Automotive Electronics GmbH. Despite all due care and attention, Softing accepts no liability and extends no guarantee for the correctness, completeness or currentness of the information.

