
©
 2

01
6

So
fti

ng
 A

ut
om

ot
iv

e
El

ec
tro

ni
cs

 G
m

bH
. D

es
pi

te
 a

ll
du

e
ca

re
 a

nd
 a

tte
nt

io
n,

 S
of

tin
g

ac
ce

pt
s

no
 li

ab
ili

ty
 a

nd
 e

xt
en

ds
 n

o
gu

ar
an

te
e

fo
r t

he
 c

or
re

ct
ne

ss
, c

om
pl

et
en

es
s

or
 c

ur
re

nt
ne

ss
 o

f t
he

 in
fo

rm
at

io
n.

O r d e r a d d i t i o n a l c o p i e s : i n f o . a u t o m o t i v e @ s o f t i n g . c o m / w w w. a u t o m o t i v e . s o f t i n g . c o m 0

OTX Standardized Language for Diagnostic and Test Sequences

Overview OTX CoreOTX Standard ISO 13209

W
hy

 O
TX

O
T

X
 S

ta
nd

ar
d

O
ve

rv
ie

w
O

TX
 i

n
A

pp
li

ca
ti

on

Diagnostics - Use Cases for OTX

- ECU standard tests
- Protocol verifi cation
- HiL - Hardware in the Loop testing
- Gateway testing
- Onboard diagnostics (OBD)
- ECU variant coding
- ECU fl ash programming
- ECU error memory
- Guided fault diagnosis
- ECU calibration
- Assembly-aiding production processes
- Test sequences for assembled systems
- EoL - End of Line tests
- Error analysis
- Measurement data monitoring
- Ensuring sequence order during production

Advantages of OTX

- The specifi cation and implementation of test sequences
 are combined in one OTX document
- Easy maintainability of OTX sequences thanks to the
 separation of user interface, sequence model and data
- Simple integration of extensive OTX libraries for reusable
 sequences
- Debugging possibilities support error search when
 creating OTX sequences
- Human- and machine-readable fi ling format for test
 sequences (XML)
- OTX can also be used outside of vehicle diagnostics;
 other add-ons can be incorporated (invoking DLLs or APIs)
- Simpler in-house sequence creation as the focus is on
 application know-how, not on programming expertise
- The high degree of fl exibility in the OTX creation process
 enables the use of even minor improvement potential
 which can nevertheless represent considerable cost savings
- The use of an ISO standard ensures a greater selection
 of available software tools (manufacturer independence)
- Long-term availability of validated diagnostic sequences
 and thus the securing of diagnostic know-how

How do I use OTX?

The OTX format offers explicit support for a three-stage development of
test sequences.

 Specifi cation stage:
 The overall sequence logic is developed at a descriptive, linguistic level.
 This is helpful at early stages in the test sequence development process,
 when most details for creating an executable test sequence are not known.

 Intermediate stage:
 The test sequence contains parts that are already executable;
 other parts are still at the specifi cation stage.
 At any step in this process, the sequence can be saved and exchanged
 in a valid format.
 A runtime interpreter can execute the implemented parts.

 Realization stage:
 There are no more specifi cation-only parts in the sequence.
 The OTX sequence is now fully executable.
 It represents an “executable specifi cation”.

Signature Concept in OTX

A signature describes an interface to a procedure. It equals a procedure
without a realization.

Similar to nodes, procedures in an OTX sequence can be bound to a validity.

Instead of a procedure, the programmer calls the signature in an OTX sequence.

Depending on the validity, the corresponding procedure is executed.

In the OTX Core data model there is only one type of signature called
ProcedureSignature.

What is OTX?

Standard format:
The OTX standard ISO 13209 proposes an open and standardized
format for the human- and machine-readable description of
diagnostic test sequences.

Diagnostic test sequences:
Sequences for diagnostic testing are utilized whenever automotive
components or functions with diagnostic abilities are being
diagnosed, tested, reprogrammed or initialized by off-board test
equipment.

OTX
Overview

Part 1
provides a general overview of the individual parts of
the OTX standard. It also documents use cases that
were considered during standardization.

OTX
Core

Part 2
lists the requirements and technical specifi cations for
the basis of the OTX format, namely the “OTX Core”.
To achieve extensibility the core also contains well-
defi ned extension points that allow a separate defi nition
of additional OTX features – without the need to change
the core data model.

OTX
Extensions

Part 3
extends the OTX Core with a set of additional standard
libraries. Automotive-specifi c features are contained
solely in Part 3 of ISO 13209. Furthermore, the list
of extensions comprises controlling measurement
equipment, internationalization, working with physical
units, accessing the environment via external DLLs
and APIs, human machine interface (HMI) elements
and other utilities.

Overview: OTX Extensions based on Part 3 of the ISO Standard

Extension Description Dependency
DateTime
(otxIFD_DateTime.xsd)

Provides access to system time Core

DiagCom
(otxIFD_DateTime.xsd)

Connecting to ECUs, creating and executing diagnostic services, analyzing communication
data

EventHandling,
Quantities, Core

DiagDataBrowsing
(otxIFD_DiagDataBrowsing.xsd)

Browsing functionality for reading data from the diagnostic database DiagCom, Core

EventHandling
(otxIFD_Event.xsd)

Support for the OTX event handling mechanism Core

Flash
(otxIFD_Flash.xsd)

Downloading and uploading fl ash data to and from ECUs DiagCom, Core

HMI
(otxIFD_HMI.xsd)

Exchange of information via the graphical user interface (GUI) through dialogs and screens EventHandling, Core

i18n
(otxIFD_i18n.xsd)

Internationalization features, multi-language support and translation mechanism Quantities, Core

Job
(otxIFD_Job.xsd)

Emulation of ODX Java Jobs by OTX test sequences DiagCom, Quantities,
Core

Logging
(otxIFD_Logging.xsd)

Support for (Log4J-style) logging Core

Math
otxIFD_Math.xsd)

Extended mathematical functions Core

Measure
(otxIFD_Measure.xsd)

Executing measurement devices service, measuring physical values, analyzing measurements EventHandling,
Quantities, Core

Quantities
(otxIFD_Quantities.xsd)

Handling of quantity data, with regard to SI unit system, transformations between units, etc. Core

StringUtil
(otxIFD_StringUtil.xsd)

Extended functionality for string handling Core

OTX Document
Header information:
- Naming, versioning
- Links to other OTX
 documents (import information)
Global entities:
- Global constants
- Global variables
- Global procedures

Procedures
Main(): Top level procedure
- Parameter declaration
- Exception handling
- Comments

Signatures
- Parameter declaration

Standard Nodes
- Action

Compound Nodes
- Group
- Loop
- Branch
- Parallel
- Mutex group
- Handler

End Nodes
- Break
- Continue
- Throw
- Return
- Terminate lanes

Context Concept in OTX
Diagnostic test sequences require access to contextual information e.g.
related to
 - vehicle (model, engine type etc.)
 - user (login name, access rights etc.)
 - application (manufacturing, engineering etc.)

During runtime, context information is treated like static, unchangeable
information.

Context information is declared as a context variable. Its value is set outside
the OTX fi le. During program execution, it can be queried and evaluated.

 ContextVariable_EngineType:String
 ContextVariable_UserLogin:String

 If ContextVariable_EngineType == “Diesel”
 ExecuteDiagService - {DiagnosticSessionControl}

Validity Concept in OTX
The validity concept is based on the Context concept.

A validity is always true or false.

It can be
 - a context variable of type Boolean
 - a composed logical expression resulting in true or false of e.g.
 several context variables.

Nodes in an OTX sequence can be bound to a validity and therefore contain
several realizations.

 Validity_UserLogin : ContextVariable_UserLogin == “Mueller”
 Validity_EngineType : ContextVariable_EngineType == “Diesel”

Typical Diagnostic Test Sequence

Start

End

Yes

No

Request Seed from ECU()

CalculateKey(Seed)

SendKey()

Key ==
valid?

Start Flash Procedure

Who needs OTX?

ECU Development

Factory
Tester

Inline / EOL
Test Engineer

Vehicle
Test Engineer

Function
Specifi cation Editor

Vehicle
Specifi cation Editor

ECU
Specifi cation Editor

Function
Test Engineer

ECU
Test Engineer

Development Testing Production Service

Where is OTX applied?

Development Testing Production Service

ECU Development

Specifi cation
Editing

After Sales
Tester

Factory
Tester

Road
Test

System
Integration

HiL

System
Development

Diagnostic System Overview with OTX

OTX Editor OTX GUIs

ECU 1 ECU 2

OTX Runtime

Interface for Applications (API)

Interface for Bus Systems

Vehicle Communication
Interface (VCI)

Base System with MCD Kernel / D-Server

Tester Applications

ODX Authoring System

Problem / Situation

 Process without OTX

 Process with OTX

Specifi cation

Specifi cation

Realization

Realization

Implementation

Implementation

 My_Test_Procedure is executed when
 - My_Signature is called
 - and Validity_V1 is TRUE

 Proprietary data - various data formats - media disruption

 Consistent workfl ow based on ISO standard

DEVELOP APPLY TEST
Action

RequestSeed from ECU()

CalculateKey(Seed)

Start Flash Procedure()

Key == valid

Procedure SecurityAccess

Action

Action

End If

If

End Procedure

Yes

No

1
2

3
4

Procedure: SecurityAccess
Variables:
Name DataType SubDataType StorageType Init Value Specification
key Integer Variable (local) 9999
valid Integer Constant (local) 1234

// Calculates Key to access ECU according to specific algorithm.

ExecuteDiagService - {SecurityAccessRequestSeed}

DiagService = comChannel.<SecurityAccessRequestSeed>

// RequestSeedfromECU()

ExecuteDiagService - {SecurityAccessSendKey}

DiagService = comChannel.<SecurityAccessSendKey>

// CalculateAndSendKey()

If key == valid

End If

ExecuteDiagService - {TransferData}

DiagService = comChannel.<TransferData>

// StartFlashProcedure (flashfile)

No

Yes

