

PCAN-PCI/104-Express

User Manual

関連商品

Product Name	Model	Part Number
PCAN-PCI/104-Express Single Channel	1 つの CAN チャネル	IPEH-003054
PCAN-PCI/104-Express Double Channel	2 つの CAN チャネル	IPEH-003055
PCAN-PCI/104-Express Single Channel opto-decoupled	1 つの CAN チャネル、CAN 接続用のガルバニック絶縁	IPEH-003056
PCAN-PCI/104-Express Double Channel opto-decoupled	2 つの CAN チャネル、CAN 接続用のガルバニック絶縁	IPEH-003057
PCAN-PCI/104-Express Quad Channel opto-decoupled	4 つの CAN チャネル、CAN 接続用のガルバニック絶縁	IPEH-003058

表紙の写真は、製品 PCAN-PCI/104-Express Double Channel opto-decoupled を示しています。他の製品バージョンのフォーム ファクターは同じですが、機器が異なります。

インプリント

PCAN [®]は、PEAK-System Technik GmbH の登録商標です。CiA[®]は、Automation e.V における CAN の登録コミュニティ商標です。

本書に記載されているその他すべての製品名は、それぞれの会社の商標または登録商標である可能性があります。
"™"または"[®]"で明示的にマークされていません。

Copyright © 2022 PEAK-System Technik GmbH

このドキュメントの複製(コピー、印刷、またはその他のフォーム)および電子配布は、PEAK-System Technik GmbH の明示的な許可がある場合にのみ許可されます。PEAK-System Technik GmbH は、事前の発表なしに技術データを変更する権利を留保します。一般的なビジネス条件とライセンス契約の規制が適用されます。すべての権利は留保されています。

PEAK-System Technik GmbH Otto-Roehm-Strasse 69 64293 Darmstadt Germany

Phone: +49 (0)6151 8173-20 Fax: +49 (0)6151 8173-29

www.peak-system.com info@peak-system.com

Document version 3.0.1 (2022-04-21)

目次

関連商品	2
インプリント	2
1 はじめに	
1.1 プロパティの概要	5
1.2 システム要件	5
1.3 提供範囲	5
2 設定	7
2.1 外部機器の電圧供給	7
3 インストール	10
3.1 デバイス・ドライバーのセットアップをインストールする	10
3.2 CAN インターフェイスをインストール	10
3.3 運用準備の確認	11
4 CAN バスの接続	12
4.1 D-Sub コネクタを経由した接続	12
4.2 配線	12
4.3 Windows でのアプリケーション例	14
5 CAN モニター PCAN-View	15
5.1 CAN インターフェイスの初期化	16
5.2 CAN メッセージの送信	18
5.3 追加のタブ	19
6 API PCAN-Basic	24
6.1 PCAN-Basic の特徴	25
6.2 API の主な説明	26
7 技術仕様	27
付録 A CE 証明書	29
付録 B 寸法図	30
付録 С クイックリファレンス	31
付録 D Linux	32

1 はじめに

PC/104-Plus コンピューター用の CAN インターフェイス PCAN-PCI/104-Express は、1 チャネル、2 チャネル、または 4 チャネルのバージョンが用意されています。CAN バスは、付属のスロット・ブラケットに D-Sub 9 ピンコネクタで接続します。最大 4 つの CAN インターフェイスをプラグインして動作させることが可能です。

Opto-decoupled CAN インターフェイスのみ: 各 CAN チャネルは最大 500V のガルバニック絶縁が施されており、 CAN チャネルとコンピューター間の電気的干渉のピークを防ぎます。

CAN 接続のアプリケーションを開発するためのモニターソフトウェア PCAN-View とプログラミング・インターフェイス PCAN-Basic は、提供範囲に含まれています。

さまざまなオペレーティング・システム用のデバイス・ドライバーが存在するため、プログラムは接続された CAN バスに容易にアクセスすることができます。

本マニュアルでは、**Windows** での CAN インターフェイスの使用方法について説明します。 **Linux** 用のデバイス・ドライバーとアプリケーション情報は以下を参照ください:

www.peak-system.com/quick/DL-Driver-E

このマニュアルの最後には、CAN インターフェイスのインストールと操作に関する簡単な情報が記載されたクイック リファレンスがあります。

1.1 プロパティの概要

- PCI/104-Express カード、1 レーン (x1)
- フォームファクター PC/104
- 1システムで4枚まで使用可能
- 1、2、または 4 つの High-speed CAN チャネル (ISO 11898-2)
- 5 kbit/s から 1 Mbit/s までのビット レート
- CAN 仕様 ISO 11898-1 に準拠
- D-Sub スロット ブラケット、9 ピンを経由した CAN バスへの接続(CiA® 303-1 に準拠)
- CAN コントローラーの FPGA 実装(SJA1000 対応)
- NXP PCA82C251 CAN トランシーバー
- CAN 接続を経由した外部デバイスへの電圧供給は、はんだジャンパーを経由して接続可能
- CAN 接続ごとに最大 500 V のガルバニック絶縁 (opto-decoupled バージョンのみ)
- 動作温度: -40~+85 °C (-40~+185 °F)
- オプションで利用可能: PC/104-ISA スタック・スルー・コネクタ

1.2 システム要件

PC/104-Plus コンピューターと:

- ホストへの PCIe/104 接続
- オペレーティング・システム Windows[®] 11 (64 ビット)、Windows[®] 10 (32/64 ビット) または Linux (32/64 ビット)

1.3 提供範囲

- CAN インターフェイス PCAN-PCI/104-Express
- CAN バス用 D-Sub コネクタ付きスロット・ブラケット (4 チャネル バージョンの場合は 2 つ)

ダウンロード

- Windows[®] 11(64 ビット),Windows[®] 10(32/64 ビット),Linux(32/64 ビット)用デバイス・ドライバー
- CAN モニター PCAN-View for Windows
- CAN 接続のアプリケーションを開発するためのプログラミング・インターフェイス PCAN-Basic
- 自動車業界の標準的なプロトコルに対応するプログラミング・インターフェイス

2 設定

CAN インターフェイスを PC/104-Plus にインストールする前に: 以下のコンフィグレーションが必要かどうか確認してください。

2.1 外部機器の電圧供給

注意! 外部デバイスの電圧供給は個別に保護されていません。したがって、CAN ケーブルや周辺機器を接続したり取り外したりする前に、コンピューターの電源を切ってください。

オプションで、D-Sub コネクタのピン 9 のはんだブリッジを経由して、CAN チャネルごとに外部電源を個別に接続できます。これにより、バス コンバータ (Low-Speed-CAN 用の PCAN-TJA1054) などの外部デバイスに 5 V DC の電圧を供給することができます。9 番ピンは出荷時未接続です。

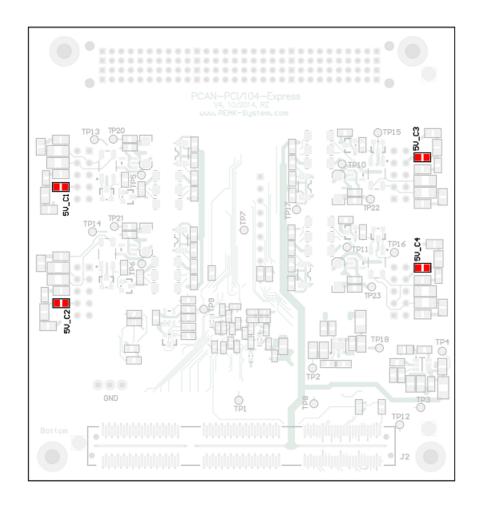
電流出力は以下のように制限されています

- ガルバニック絶縁なしで 100 mA。
- ガルバニック絶縁で 50 mA。

ガルバニック絶縁を備えたバージョンの低電流出力は、中間 DC/DC コンバータによるものです。

2.1.1 電圧供給の有効化

短絡の危険があります! CAN インターフェイスでのはんだ付けは、資格のある電気工学担当者の みが実行できます。



注意! 静電気放電 (ESD) は、カード上のコンポーネントを損傷または破壊する可能性があります。ESD を回避するための予防措置を講じてください。

外部デバイスの電源用のはんだフィールドは、CAN インターフェイスの底面側にあります。次の図は、4 チャネル カードのはんだフィールドの位置を示しています。 シングル チャネル バージョンとデュアル チャネル バージョンのはんだフィールドは同じ位置にあります。

必要な設定に従って、カード上のはんだブリッジを設定します。

		5 V supply	
D-Sub connector	Solder field	Without (Standard)	PIN 9
CAN 1	5V_C1		
CAN 2	5V_C2		
CAN 3	5V_C3		
CAN 4	5V_C4		

3 インストール

この章では、Windows での CAN インターフェイス PCAN-PCI/104-Express のソフトウェア セットアップと PC/104 コンピューターへの CAN インターフェイスのインストールについて説明します。

注: Linux へのインストールについては、付録 D Linux を参照してください。

CAN インターフェイスを接続する前に、ドライバーをインストールしてください。

3.1 デバイス・ドライバーのセットアップをインストールする

- 1. 当社の Web サイトからデバイス・ドライバーのセットアップをダウンロードします: www.peak-system.com/quick/DL-Driver-E
- 2. ファイル PEAK-System Driver-Setup.zip を解凍します。
- ファイル PeakOemDrv.exe をダブルクリックします。
 ドライバーのセットアップが開始されます。
- 4. プログラムの指示に従います。

3.2 CAN インターフェイスをインストール

注意! 静電気放電(ESD)は、カード上のコンポーネントを損傷または破壊する可能性があります。ESDを回避するための予防措置を講じてください。

1. CAN 接続ごとに 1 本のケーブルをスロット ブラケットから CAN インターフェイスの 10 ピン ソケットに接続します。

- 2. コンピューターをシャットダウンします。
- 3. コンピューターの電源を切断します。
- 4. CAN インターフェイスを PCI/104 Express カードに直接接続します。 ホストコンピュータにはスタックごとに最大 4 枚の PCI/104-Express カードの差し込みが可能です。
- 5. スロット ブラケットを取り付けます。
- 6. コンピューターの電源を再接続します。
- 7. コンピューターの電源を入れ、Windows を起動します。

Windows が新しいハードウェアを検出し、ドライバーのインストールを完了します。

3.3 運用準備の確認

- 1. Windows のスタート・メニューを開きます。
- Peak Settings と入力し、 Enter を押します。
 Peak Settings ウィンドウが表示されます。
- CAN ハードウェアを選択します。
 接続されている CAN インターフェイスが表示されます。

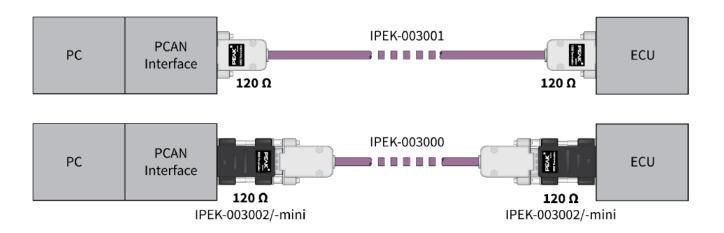
4 CAN バスの接続

4.1 D-Sub コネクタを経由した接続

スロット ブラケットを CAN インターフェイスに接続すると、CAN バスを D-Sub コネクタに接続できます。CAN のピン割り当ては、CiA 8 303-1 の仕様に対応しています:

10-pin connector on CAN interface	D-Sub plug on slot bracket, 9-pin	
9 7 5 3 1	1 2 3 4 5	
10 8 6 4 2	6 7 8 9	Assignment
2	6	GND
3	2	CAN_Low
4	7	CAN_High
5	3	GND
8	9	+5 V (optional)
1, 6, 7, 9, 10	1, 4, 5, 8	None

4.2 配線


4.2.1 終端処理

High-speed CAN バス(ISO 11898-2)は、両端を 120Ωで終端する必要があります。終端処理により、信号の反射を防ぎ、接続された CAN ノード(CAN インターフェイス、コントロール・デバイス)のトランシーバーが正しく動作するようにします。

CAN インターフェイス PCAN-PCI/104-Express は、内部終端を持ちません。CAN インターフェイスは、終端処理された CAN バスで使用してください。

4.2.2 接続例

この例は、PCAN インターフェイスとコントロール・ユニット(ECU)間の接続を示しています。上の例は、両端が 120Ωで終端されているケーブルとの接続を示しています。下の例では、接続は終端アダプタを使用して行われます。

4.2.3 最大バス長

最大バス長は、主にビットレートによって異なります。

Nominal b	oit rate	Bus length	
1	Mbit/s	40	m
500	kbit/s	110	m
250	kbit/s	240	m
125	kbit/s	500	m
50	kbit/s	1.3	km
20	kbit/s	3.3.	km
10	kbit/s	6.6	km
5	kbit/s	13	km

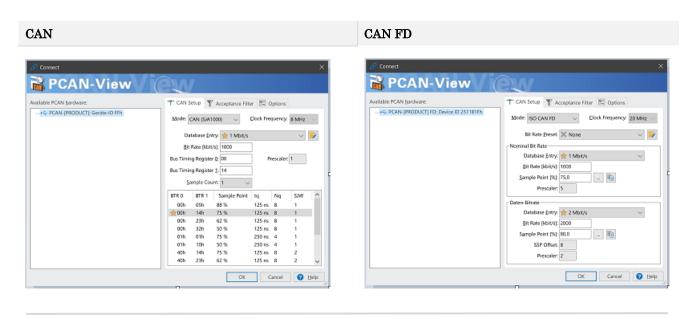
記載されている値は、理想的なシステムに基づいて計算されたものであり、実際とは異なる場合があります。

4.3 Windows でのアプリケーション例

CAN インターフェイスにアクセスするためのサンプルアプリケーションとして、Windows のスタート・メニューから CAN モニター PCAN-View を実行します。

5 CAN モニター PCAN-View

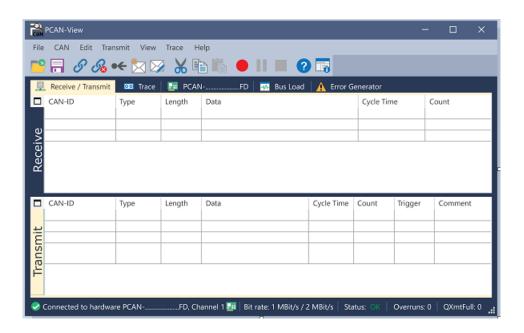
CAN モニターPCAN-View は、CAN および CAN FD メッセージを表示、送信、および記録するための Windows ソフトウェアです。このソフトウェアは、Windows でのデバイス・ドライバー・パッケージのインストールとともにインストールされます。


次項では、CAN インターフェイスの初期化を例として説明します。

PCAN-View の使用に関する詳細情報は、メニュー項目 Help の下のプログラムウィンドウにあります。

5.1 CAN インターフェイスの初期化

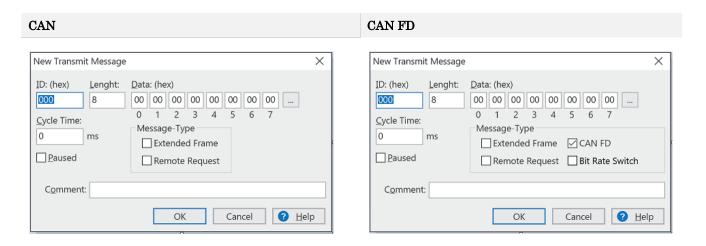
Windows の スタート・メニューからプログラム PCAN-View を開きます。
 CAN インターフェイスに応じて、CAN FD の設定の有無にかかわらず Connect ダイアログが表示されます。



CAN-Interface	利用可能なハードウェアのリスト項目
USB Interface, 1-channel	上記の例を参照してください。
USB Interface, 2-channel	PCAN-USB Pro FD: Device ID 251181Fh, Channel 1
PCIe Interface, 2-channel	PCAN-PCI Express at PCI Bus 1, Device 0, Channel 1 PCAN-PCI Express at PCI Bus 1, Device 0, Channel 2

- 2. CAN インターフェイスが複数ある場合は、希望するインターフェイスを選択します。複数のチャネルがある場合は、リストから希望するチャネルを選択します。
- 3. 接続する CAN バスに応じたビットレート等を設定します。

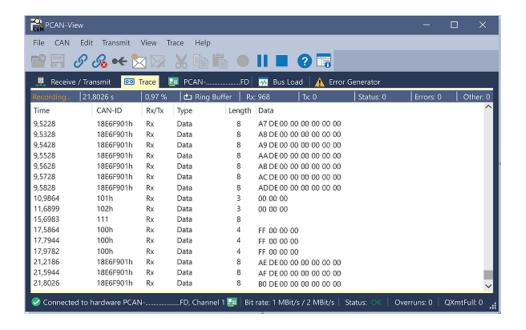
4. OK をクリックしてエントリを確認します。メインウィンドウが表示され、Receive / Transmit タブが表示されます。


5. 別のチャネルや CAN インターフェイスを初期化するには、PCAN-View の別のインスタンスを開いてください。

5.2 CAN メッセージの送信

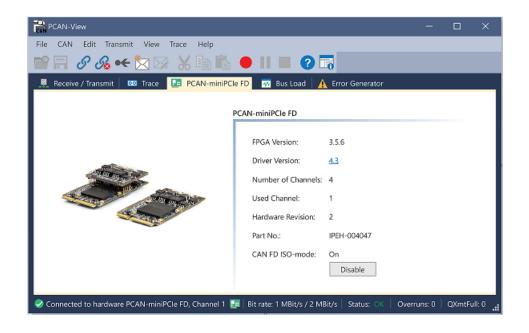
1. メニューコマンド Transmit / New Message を選択します。

CAN インターフェイスに応じて、CAN FD の設定の有無にかかわらずダイアログボックス New Transmit Message が表示されます。

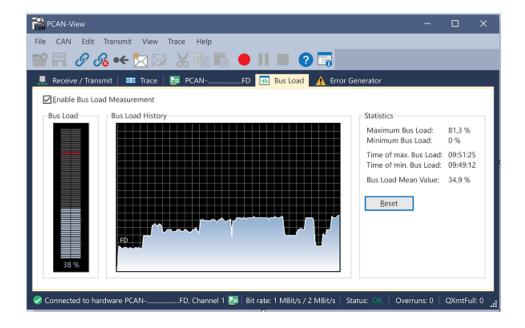

- 1. メッセージの ID、長さ、およびデータを入力します。接続されている CAN バスに応じて他の設定を行うことができます。
- 2. Cycle Time フィールドに値を入力して、手動または定期的なメッセージ送信を選択します。 定期的に送信するには、0 より大きい値を入力してください。 手動でのみ送信するには、値 0 を入力します。
- OK をクリックしてエントリを確認します。
 作成された送信メッセージが Receive / Transmit タブに表示されます。
- 4. メッセージを手動で送信するには、メニューコマンド Transmit > Send を選択するか、 space バーを押します。 手動送信プロセスは、定期的に送信される CAN メッセージに対して追加で実行されます。

5.3 追加のタブ

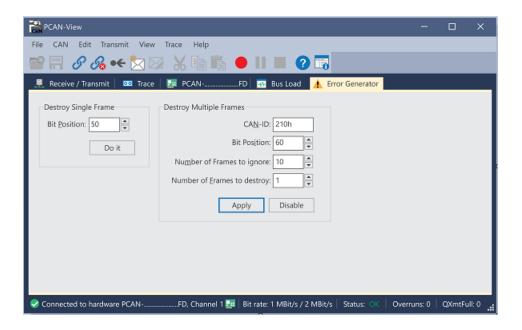
CAN インターフェイスに応じて、追加のタブを使用できます。


5.3.1 Trace タブ

トレーサー(データロガー)は、CAN バスの通信をリニアまたはリングバッファモードで記録します。トレース・データはファイルに保存できます。


5.3.2 CAN-Interface タブ

CAN-Interface タブには、ハードウェアと使用されている Windows デバイス・ドライバーに関する情報が表示されます。この画面は、PCAN-miniPCle FD の例です。CAN インターフェイスに応じて、同じタイプの複数のインターフェイスを区別するためにハードウェア ID を決定できます。CAN FD とのインターフェイスの場合、ハードウェアのデフォルトとして "ISO" または "Non-ISO" に従った送信を設定できます。



5.3.3 Bus Load タブ

Bus Load タブには、現在のバス負荷、その時間履歴、および接続されている CAN チャネルの統計情報が表示されます。

5.3.4 Error Generator タブ

Error Generator タブにより、テスト環境または CAN バスの開発中に、6 つの連続したドミナントビットにより、CAN バスの通信がコントロール不能になることがあります。これは、CAN バスのプロトコル違反であり、接続された CAN ノードによってエラーとして認識されなければなりません。

注: Error Generator は、経験豊富なユーザーと開発環境でのみ使用する必要があります。詳細については、カスタマーサポートにお問い合わせください: support@peak-system.com

Error Generator を使用して CAN フレームを破棄するには、次の2つの方法のいずれかを使用します。

- アクティベーション後に1回
- CAN ID に関連する特定の間隔で繰り返し

Destroy Single CAN Frame

Destroy Single Frame 領域は、アクティブ化後にプラグインカードによって認識される次の CAN フレームを指します。

- 1. CAN フレームでエラーが生成される Bit Position を入力します。Bit Position は識別子の後に開始する必要があります。カウントにはスタッフ・ビットが含まれます。
- 2. Doit で破棄アクションを実行します。

次に Received または Transmitted される CAN フレームは、選択した Bit Position で破棄されます。

Destroy Multiple CAN Frames

- 1. 複数回破壊することを目的とした CAN フレームの CAN ID を入力します。以下の仕様はこの ID を参照しています。
- 2. CAN フレームでエラーが生成される Bit Position を入力します。Bit Position は識別子の後に開始する必要があります。カウントにはスタッフ・ビットが含まれます。
- 3. CAN メッセージが破棄される前に無傷で送信される場合は、無視するフレーム数を指定します。
- 4. 破棄するフレーム数を決定します。
- 5. 入力内容を Apply で確認して、エラージェネレータをアクティブにします。
- 6. Disable でそれ以上の CAN フレームの破壊を停止します。

6 API PCAN-Basic

0

PCAN-Basic の使用目的には、ライセンス権の遵守が必要です。次のエンドユーザーの使用許諾契約書をお読みください:

https://www.peak-system.com/quick/eula

プログラミング・インターフェイス(API)PCAN-Basic は、PEAK-System の CAN-Interface に独自のプログラムを接続するための基本的な機能を提供します。PCAN-Basic は、プログラムとデバイス・ドライバー間のインターフェイスです。Windows オペレーティング・システムではこれは DLL(Dynamic Link Library)であり、Linux オペレーティング・システムでは SO(Dynamic Shared Object)です。PCAN-Basic は、オペレーティング・システム間で互換性があるように設計されています。ソフトウェア・プロジェクトは、サポートされているシステム間でほとんど労力をかけずに移植できます。

Windows にデバイス・ドライバー・パッケージをインストールすると、API PCAN-Basic の DLL ファイルがシステム フォルダーに配置されます。すべての一般的なプログラミング言語の例、およびライブラリとヘルプファイルは、www.peak-system.com/quick/DL-Develop-E からダウンロード・パッケージとして入手できます。

Linux の場合、API のダウンロードはこのリンクから入手できます。PCAN-Basic を使用するには、SocketCAN でのアクセスができないため、chardev ドライバーを含む別のドライバー・パッケージが必要です。"Driver Package for Proprietary Purposes"、ユーザーマニュアル、および実装の詳細については、 www.peak-system.com/linux を参照してください。

6.1 PCAN-Basic の特徴

- CAN および CAN FD 接続のアプリケーションを開発するためのスレッドセーフな API を提供
- CAN および CAN FD の CAN 仕様 ISO 11898-1 をサポート
- サポートするオペレーティング・システム:
 - Windows® 11 (64 ビット)、10 (32/64 ビット)
 - Linux (32/64 ビット)
- 複数の PEAK-System アプリケーションと独自のアプリケーションを物理チャネルで同時に操作可能
- Single DLL (Win) / SO (Linux)で、サポートされるすべての種類のハードウェアに対応
- 各ハードウェアタイプで最大 16 チャネルまで使用可能
- チャネル間の簡単な切り替え
- PCAN-LAN デバイスタイプ経由で PCAN-Gateway の CAN チャネルにアクセス可能
- Windows 環境で CAN チャネルあたり最大 32,768 の CAN メッセージをドライバー内部でバッファリング
- 1 µs までの受信メッセージのタイムスタンプの精度 (使用する PEAK CAN インターフェイスによって異なります)
- PEAK-System の CAN 用 v1.1 および CAN FD アプリケーション用 v2.0 のトレース・フォーマットをサポート
- Listen-only モードなどの特定のハードウェア・パラメータへのアクセス
- メッセージを受信したときの Windows イベントによるアプリケーションの通知
- CAN エラーフレームのサポート
- CAN エコーフレームによる物理的な送信の確認
- デバッグ操作用の拡張システム

- 多言語デバッグ出力
- 出力言語はオペレーティング・システムによって異なります
- デバッグ情報は個別に定義できます

6.2 API の主な説明

CAN インターフェイスにアクセスするシーケンスは、次の3つのフェーズに分かれています:

初期化について

CAN チャネルは、使用する前に初期化する必要があります。CAN の場合は CAN_Initialize、CAN FD の場合は CAN_InitializeFD という関数を呼び出すだけで、初期化が行われます。この API では、CAN インターフェイスの種類 ごとに、最大 16 個の CAN チャネルを同時に使用することができます。初期化が成功すると、CAN チャネルは準備完了となります。それ以上のコンフィギュレーションステップは必要ありません。

相互作用

メッセージの送受信には、初期化モードに応じて、CAN_Read、CAN_Write、CAN_ReadFD、CAN_WriteFD という 関数が使用できます。また、特定の CAN ID に限定するメッセージフィルターの設定や、CAN コントローラーを Listen-only モードに設定するなどの追加設定も可能です。

CAN メッセージの受信については、アプリケーション(クライアント)に自動的に通知するイベントを設定することができます。これにより、以下のような利点があります:

- アプリケーションが定期的に受信メッセージを確認する必要がない(ポーリングがない)。
- 受信時の応答時間が短縮されます。

完了

通信を終了するには、関数 CAN_Uninitialize が呼び出され、CAN チャネルの予約済みリソースなどが解放されます。 さらに、CAN チャネルは "Free" としてマークされ、他のアプリケーションから利用可能になります。

7 技術仕様

Connections			
Commediations	Connection side	Connection type	
CAN slot bracket	CAN-bus		
CAN SIOL DIACKEL		D-Sub (m), 9-pin	
	CAN interface	10-pin connector	
PCIe/104	PCIe/104, PCI Express x1 (1 Lane		
	optionally equipped with contact s	trip on request	
CAN (FD)			
Protocols on OSI layer 2	CAN according to ISO 11898-1		
Physical transmission, OSI layer 1	ISO 11898-2 (High-speed CAN)		
Transceiver	NXP PCA82C251		
CAN bit rates	5 kbit/s to 1 Mbit/s		
Controller	FPGA implementation (SJA1000 compatible)		
Time stamp resolution	1 μs		
	Single Channel	without	
	Double Channel	without	
Galvanic isolation	Single Channel opto-decoupled	up to 500 V, separate for each CAN connector	
	Double Channel opto-decoupled	up to 500 V, separate for each CAN connector	
	Quad Channel opto-decoupled	up to 500 V, separate for each CAN connector	
	Single Channel	5 V, max. 100 mA	
Power supply external devices at	Double Channel	5 V, max. 100 mA	
D-Sub pin 1 and/or pin 9 (not	Single Channel opto-decoupled	5 V, max. 50 mA	
assigned at delivery)	Double Channel opto-decoupled	5 V, max. 50 mA	
	Quad Channel opto-decoupled	5 V, max. 50 mA	

none

Internal Termination

Power supply		
Supply voltage	5 V DC	
	Single Channel	360 mA
	Double Channel	420 mA
Max. current consumption without	Single Channel opto-decoupled	360 mA
power supply for external devices	Double Channel opto-decoupled	420 mA
	Quad Channel opto-decoupled	550 mA
Measures		
Size absolute (W x L x H)	90.2 x 95.9 x 21.8 mm	
	Single Channel	42 g
	Double Channel	47 g
	Single Channel opto-decoupled	44 g
Weight	Double Channel opto-decoupled	50 g

Environment	
Operating temperature	-40 to +85 °C (-40 to +185 °F)
Temperature for storage and	-40 to +125 °C (-40 to +257 °F)
transport	-40 t0 +125 C (-40 t0 +257 F)
Relative humidity	15 to 90 %, not condensing

56 g

25 g

40 g

Quad Channel opto-decoupled

Slot bracket Single Channel

Slot bracket Double Channel

Conformity	
RoHS	EU Directive 2011/65/EU (RoHS 2) + 2015/863/EU
KOHS	DIN EN IEC 63000:2019-05; VDE 0042-12:2019-05
	EU Directive 2014/30/EU
EMC	DIN EN 55024:2016-05; VDE 0878-24:2016-05
	DIN EN 55032:2016-02; VDE 0878-32:2016-02

付録 A CE 証明書

EU Declaration of Conformity

This declaration applies to the following product:

PCAN-PCI/104-Express Product name: Item number(s): IPEH-003054/55/56/57/58 Manufacturer: PEAK-System Technik GmbH

> Otto-Röhm-Straße 69 64293 Darmstadt Germany

We declare under our sole responsionary the following directives and the affiliated harmonized standards: We declare under our sole responsibility that the mentioned product is in conformity with

EU Directive 2011/65/EU (RoHS 2) + 2015/863/EU (amended list of restricted substances)

DIN EN IEC 63000:2019-05; VDE 0042-12:2019-05

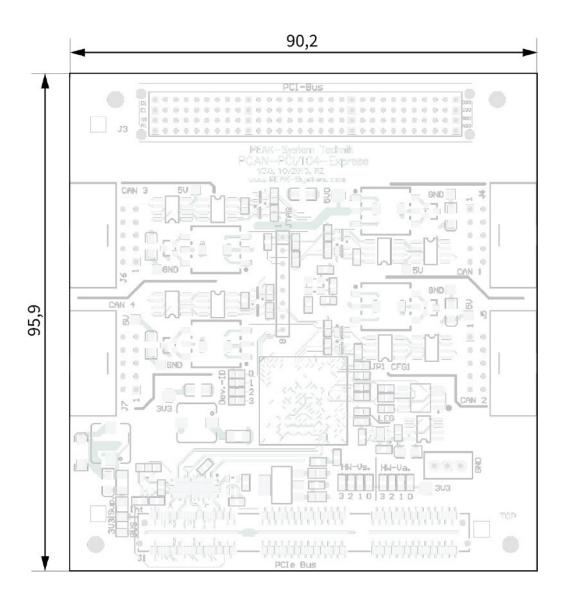
Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances (IEC 63000:2016); German version EN 63000:2018

EU Directive 2014/30/EU (Electromagnetic Compatibility)

DIN EN 55024:2016-05; VDE 0878-24:2016-05

Information technology equipment - Immunity characteristics - Limits and methods of measurement (CISPR 24:2010 + Cor.:2011 + A1:2015); German version EN 55024:2010 + A1:2015

DIN EN 55032:2016-02; VDE 0878-32:2016-02


Electromagnetic compatibility of multimedia equipment - Emission Requirements (CISPR 32:2015); German version EN 55032:2015

Darmstadt, 9 March 2022

Uwe Wilhelm, Managing Director

付録 B 寸法図

寸法 (mm)。

付録 C クイックリファレンス

Windows でのソフトウェア/ハードウェアのインストール

ホームページ(www.peak-system.com/quick/DL-Driver-E)から、デバイス・ドライバーのインストールパッケージを ダウンロードしてください。CAN インターフェイスをインストールする前に、ドライバーをインストールしてください。

ドライバーのインストール後、コンピューターの USB ポートまたは接続された USB ハブに CAN インターフェイスを接続します。新しいハードウェアが Windows によって認識され、ドライバーが初期化されます。その後、インターフェイスの LED が点灯します。

動作確認を行います。Windows のスタート・メニューを開きます。Peak Settings と入力し、Enter を押します。 PEAK Settings ウィンドウが表示されます。接続された USB インターフェイスが CAN ハードウェアの下に表示されます。

Windows でのスタートアップ

CAN インターフェイスにアクセスするためのサンプルアプリケーションとして、Windows のスタート・メニューから CAN モニター PCAN-View を実行します。CAN インターフェイスの初期化には、希望する CAN チャネルと CAN ビットレートを選択します。

Pin assignment

10-pin connector on CAN interface	D-Sub plug on slot bracket, 9-pin	
9 7 5 3 1	1 2 3 4 5	
10 8 6 4 2	6 7 8 9	Assignment
2	6	GND
3	2	CAN_Low
4	7	CAN_High
5	3	GND
8	9	+5 V (optional)
1, 6, 7, 9, 10	1, 4, 5, 8	None

付録 D Linux

カーネルのバージョンによっては、PEAK-System の CAN インターフェイス用のデバイス・ドライバーがすでにオペレーティング・システムに含まれています。CAN インターフェイスはネットワーク・デバイス(SocketCAN、netdev)として扱われます。SocketCAN のドキュメントは、https://www.kernel.org/doc/Documentation/networking/can.txt で見ることができます。

grep PEAK_ /boot/config-`uname -r` コマンドは、利用可能なドライバーをリストアップします。次の表は、 PCAN-Interfaces と、それらがサポートされているカーネルバージョンを示しています。

PCAN-Interface			Kernel version	
PCAN-PCI	PCAN-PCI Express	PCAN-miniPCI	≥ 3.2	
PCAN-PC/104-Plus	PCAN-PCI/104-Express			
PCAN-USB	PCAN-USB Pro	PCAN-ExpressCard	≥ 3.4	
PCAN-PCI Express	PCAN-miniPCIe		≥ 3.4	
PCAN-PCI/104-Express			≥ 3.7	
PCAN-USB FD	PCAN-USB Pro FD		≥ 4.0	
PCAN-Chip USB			≥ 4.11	
PCAN-PCI Express FD			≥ 4.12	
PCAN-PCI/104-Express FD	PCAN-miniPCIe FD	PCAN-Chip PCIe FD	≥ 4.12	
PCAN-M.2				
PCAN-Chip PCIe			≥ 4.3	
PCAN-USB X6			≥ 4.9	

PCAN-Interface に必要なドライバーが存在し、ロードされているかどうかは、次のコマンドで確認できます: |smod | grep ^peak check. 初期化が成功した場合、応答行は peak usb または peak pci で始まります。

必要なドライバーが一覧にない場合は、 "Driver Package for Proprietary Purposes" をインストールしてください。 ダウンロード、ドライバーのユーザーマニュアル、および、対応する "Implementation Details" は、次の場所にあります: www.peak-system.com/linux

また、PCAN-Basic、libpcan、libpcanfd など、chardev ドライバーをベースにした API を使用する場合にもこのドライバー・パッケージが必要です。