

# PCAN-RS-232

## **User Manual**





#### 関連商品

| Product Name | Model           | Part Number |
|--------------|-----------------|-------------|
| PCAN-RS-232  | プラスチックケース、ネジ端子台 | IPEH-002100 |

## インプリント

PCAN は PEAK-System Technik GmbH の登録商標です。microSD™ は、SD-3C, LLC の米国およびその他の国にお ける商標または登録商標です。

本書に記載されているその他すべての製品名は、それぞれの会社の商標または登録商標である可能性があります。 "™"または "®" で明示的にマークされていません。

Copyright © 2023 PEAK-System Technik GmbH

このドキュメントの複製(コピー、印刷、またはその他のフォーム)および電子配布は、PEAK-System Technik GmbH の明示的な許可がある場合にのみ許可されます。PEAK-System Technik GmbH は、事前の発表なしに技術データを変更する権利を留保します。一般的なビジネス条件とライセンス契約の規制が適用されます。すべての権利は留保されています。

PEAK-System Technik GmbH Otto-Roehm-Strasse 69 64293 Darmstadt Germany Phone: +49 (0)6151 8173-20 Fax: +49 (0)6151 8173-29 www.peak-system.com info@peak-system.com

Document version 2.1.0 (2023-02-08)



## 目次

| 関連         | <b>車商品</b>                     | 2  |
|------------|--------------------------------|----|
| イン         | ンプリント                          | 2  |
| 1          | はじめに                           | 4  |
|            | 1.1 プロパティの概要                   | 5  |
|            | 1.2 提供範囲                       | 6  |
|            | 1.3 操作の前提条件                    | 6  |
| 2 ]        | コネクタとはんだ付けジャンパー                | 7  |
|            | 2.1 ネジ端子台                      | 9  |
|            | 2.2 J5 コネクタ パネル: JTAG ポート      |    |
|            | 2.3 はんだ付けジャンパー                 |    |
| 3 7        | オペレーション                        | 15 |
| 4 <b>3</b> | 独自のファームウェアの作成                  |    |
|            | 4.1 ライブラリ                      |    |
| 5 2        | ファームウェアのアップロード                 |    |
|            | 5.1 CAN 経由でのファームウェアのアップロード     |    |
|            | 5.2 シリアル接続経由でのファームウェアのアップロード   |    |
| 6 🗦        | テクニカルデータ                       |    |
| 付爹         | 录 A CE 証明書                     |    |
| 付爹         | 录 B UKCA 証明書                   |    |
| 付爹         | 录 C 寸法図                        | 31 |
| 付爹         | <b>录 D マイクロ コントローラのポートアサイン</b> | 32 |
| 付爹         | 录 E 廃棄                         |    |



#### 1 はじめに

PCAN-RS-232 は、RS-232 と CAN 間の通信用のプログラム可能なモジュールです。データ トラフィックの変換は、 NXP LPC21 シリーズ マイクロコントローラーを介して行われます。

PCAN-RS-232 の動作は、特定のアプリケーションに合わせて自由にプログラムできます。ファームウェアは、C および C++ 用の GNU コンパイラを備えた付属の開発パッケージを使用して作成され、CAN 経由でモジュールに転送されます。さまざまなプログラミング例により、独自のソリューションの実装が容易になります。

PCAN-RS-232 には、納品時に CAN から RS-232 へ、またはその逆にルーティングするデモ ファームウェアが付属しています。これにより、シリアル制御コマンドを使用してデータ転送とハードウェアを設定できます。対応する ソース コードは例として提供範囲に含まれています。



#### 1.1 プロパティの概要

- NXP LPC21 シリーズ マイクロコントローラー (16/32 ビット ARM CPU)
- 32k バイト EEPROM
- 40 kbit/s ~ 1 Mbit/s のビットレートを備えた High-speed CAN チャネル (ISO 11898-2)
- CAN 仕様 2.0 A/B に準拠
- 最大ビットレート 115,200 ビット/秒の RS-232 と CAN 間のデータ転送
- 1つのデジタル入力と1つのデジタル出力 (Low-active)
- ステータス信号用の 2 色 LED
- 10 極端子台 (Phoenix) による接続
- 8~30Vの電力供給
- 動作温度範囲 -40~85 ℃ (ボタン電池を除く)
- CAN インターフェイス経由で新しいファームウェアのロードが可能



#### 1.2 提供範囲

- PCAN-RS-232
  - プラスチックケース入り
  - 相手コネクタ付き: Phoenix Contact MC 1.5/10-ST-3.5 1840447

#### ダウンロード

- Windows 開発パッケージには以下が含まれます:
  - GCC ARM Embedded
  - フラッシュプログラム
  - プログラミング例
- マニュアル (PDF)

#### 1.3 操作の前提条件

- DC8~30Vの電源
- CAN 経由でファームウェアをアップロードする場合:
  - PCAN シリーズのコンピューター用 CAN インターフェイス(例えば: PCAN-USB)
  - オペレーティング・システム Windows 11 (x64), 10 (x86/x64)



## 2 コネクタとはんだ付けジャンパー



10 個のコネクタ極と1 個のステータス LED 付き PCAN-RS-232

PCAN-RS-232 コンバータには、次のコンポーネントを接続するための 10 極ネジ端子台が付いています:

- 供給電源
- CAN
- RS-232
- デジタル入力とデジタル出力
- CAN ブートローダーのアクティベーション



マイクロコントローラーのデバッグ ポート (JTAG) に直接アクセスするために、コンバータの回路基板上に追加の (まだ装備されていない) コネクタ パネルが用意されています。

さらに、ボードにはマイクロコントローラーの対応する入力ビットに固定ステータスを割り当てるための 4 つのはん だ付けジャンパーがあります。具体的なアプリケーションは、特に複数のコンバータが接続され動作している場合に、 ファームウェアのアップロードのために CAN バス上の PCAN-RS-232 コンバータを識別することです。

次のサブセクションでは、各コネクタの割り当てについて説明します。



## 2.1 ネジ端子台



3.5mm ピッチのネジ端子台 (相手コネクタ Phoenix Contact MC 1.5/10-ST-3.5 - 1840447)

| Terminal | Identifier      | Function                       |
|----------|-----------------|--------------------------------|
| 1        | +V <sub>b</sub> | 電源 DC8~30V                     |
| 2        | GND             | Ground                         |
| 3        | CAN_L           | 差動 CAN 信号                      |
| 4        | CAN_H           |                                |
| 5        | DOut            | デジタル出力、Low-side switch         |
| 6        | DIn             | デジタル入力、Low-active              |
| 7        | Boot CAN        | CAN ブートローダーのアクティブ化、High-active |
| 8        | GND             | Ground                         |
| 9        | RS-232 RxD      | RS-232 インターフェイス                |
| 10       | RS-232 TxD      |                                |

ライブラリに実装されているために PCAN-RS-232 コンバータのプログラミングに必要ない接続の詳細については、 付録 D マイクロコントローラーのポートアサイン も参照してください。

#### 2.2 J5 コネクタ パネル: JTAG ポート

PCAN-RS-232 コンバータの回路基板上の未実装のコネクタ パネル J5 は、ハードウェア デバッグ用に LPC2194/01 マイクロコントローラー (μC) の JTAG ポートへのアクセス オプションを提供します。

#### 未実装の J5 コネクタ パネルにアクセスします:



短絡の危険があります! PCAN-RS-232 のはんだ付けは、資格のある電気工学担当者のみが実行 できます。



**注意!** 静電気放電(ESD)により、カード上のコンポーネントを損傷または破壊する可能性があります。ESD を回避するための予防措置を講じてください。

- 1. PCAN-RS-232 を電源から外します。
- 2.2本のネジを外します。
- 3. ハウジングカバーを取り外します。
- 4. 回路基板を取り外します。



5. 希望の設定を行います。

次の図は、ボード上面の JTAG パネル (非搭載) の位置を示しています。図の下の表には、マイクロコント ローラーと内部配線の情報が含まれています。



回路基板上の JTAG パネル (非装備)

| Pin  | Signal | Port µC | Internal Wiring |
|------|--------|---------|-----------------|
| 1, 2 | GND    |         |                 |
| 3    | /Reset | /Reset  | Pull-up         |
| 4    | 3.3 V  |         |                 |
| 5    | ТСК    | P1.29   | Pull-down (R30) |
| 6    | TMS    | P1.30   | Pull-up         |
| 7    | TDO    | P1.27   | Pull-up         |
| 8    | TDI    | P1.28   | Pull-up         |
| 9    | RTCK   | P1.26   | Pull-down (R31) |
| 10   | TRST   | P1.31   | Pull-up         |



次の図は、基板の底面にあるプルダウン抵抗をはんだ付けする位置を示しています。TCK または RTCK 信号の一定 の内部プルダウン配線が目的に適さない場合は、これを行うことができます。



回路基板底部のプルダウン抵抗: R30 はピン 5 TCK 用、R31 はピン 9 RTCK 用

- 6. 回路基板を挿入し、その上にハウジング カバーを置きます。
- 7.2本のネジを元の位置に戻します。

## 2.3 はんだ付けジャンパー

このボードには、マイクロコントローラーの対応する入力ビットに永続的な状態を割り当てるための 4 つのはんだ付 けジャンパーがあります。はんだブリッジをコーディングするための 4 つの位置 (ID 0 ~ 3) は、それぞれマイクロ コントローラー LPC2194/01 (μC) の 1 つのポートに割り当てられます。対応するはんだ付けフィールドが開いてい る場合、ビットが(1)にセットされます。

具体的な用途としては、特に複数のデバイスが接続され動作している場合、ファームウェアのアップロード中に CAN バス上の PCAN-RS-232 を識別することが挙げられます。

ポートのステータスは次の場合に関係します:

- ロードされたファームウェアは、マイクロコントローラーの対応するポートでステータスを読み取るようにプログラムされています。例えば、ファームウェアの特定の機能の起動や、IDの暗号化などがここで考えられます。
- CAN 経由でファームウェアをアップロードする場合、PCAN-RS-232 コンバータは、はんだジャンパーによって 決定される 4 ビット ID によって識別されます。対応するはんだジャンパー位置が開いていると、ビットが(1) にセットされます (デフォルト設定: ID 15、すべての位置が開いています)。

| Solder field | ID0  | ID1  | ID2  | ID3  |
|--------------|------|------|------|------|
| 2 進数         | 0001 | 0010 | 0100 | 1000 |
| 10 進数        | 1    | 2    | 4    | 8    |

詳細については、5.1 CAN 経由でのファームウェアのアップロード を参照してください。



#### はんだ付けブリッジをアクティブ化します:



**短絡の危険があります!** PCAN-RS-232 のはんだ付けは、資格のある電気工学担当者のみが実行 できます。



注意! 静電気放電(ESD)により、カード上のコンポーネントを損傷または破壊する可能性があります。ESD を回避するための予防措置を講じてください。

- 1. PCAN-RS-232 を電源から外します。
- 2.2本のネジを外します。
- 3. ハウジングカバーを取り外します。
- 4. 回路基板を取り外します。
- 5. 希望の設定に従って、基板上のはんだブリッジをはんだ付けします。



- 回路基板上のはんだ付けジャンパー
- 6. 回路基板を挿入し、その上にハウジング カバーを置きます。
- 7.2本のネジを元の位置に戻します。

## 3 オペレーション

PCAN-RS-232 コンバータは、それぞれの入力ピンに電源電圧を印加することによって起動されます。詳細については、第2章 コネクタとはんだ付けジャンパー を参照してください。その後、フラッシュ メモリ内のファームウェア が実行されます。

LED のステータス表示は、使用されているファームウェアによって異なります。

PCAN-RS-232 には、出荷時に CAN から RS-232 へ、またはその逆にルーティングするサンプル ファームウェア が付属しています。これにより、シリアル制御コマンドを使用してデータ転送とハードウェアを設定できます。

コンバータの電源が入っているときは LED が緑色に点灯し、シリアル ホストへの接続が確立されている間は点滅します。

サンプル ファームウェアのドキュメントは、次のディレクトリ ブランチの開発パッケージにあります:

Hardware¥PCAN-RS-232¥Examples¥06\_CAN\_TO\_SER\_BY\_COMMAND¥help

開発パッケージは次のリンクからダウンロードできます:

www.peak-system.com/quick/DLP-DevPack



## 4 独自のファームウェアの作成

開発パッケージを利用すると、PEAK-System のプログラマブル ハードウェア製品用に独自のアプリケーション固有 のファームウェアをプログラムできます。

サポートされている製品ごとに例が含まれています。

PCAN-RS-232 コンバータには、CAN から RS-232 へ、またはその逆にルーティングするサンプル ファームウェア 6\_CAN\_TO\_SER\_BY\_COMMAND が付属して出荷されます。 これにより、シリアル制御コマンドを使用してデ ータ転送とハードウェアを設定できます。

#### システム要求:

- オペレーティング システム Windows 11 (x64)、10 (x86/x64) を搭載したコンピューター
- CAN 経由でファームウェアをハードウェアにアップロードするための PCAN シリーズの CAN インターフェイス

#### 開発パッケージのダウンロード:

www.peak-system.com/quick/DLP-DevPack

#### パッケージの内容:

- Build Tools Win32¥
   Windows 32 ビットのビルド プロセスを自動化するツール
- Build Tools Win64¥

Windows 64 ビットのビルド プロセスを自動化するツール

- Compiler¥
   サポートされているプログラマブル製品のコンパイラ
- Debug¥
  - デバッグをサポートするハードウェア用の OpenOCD およびコンフィグレーション ファイル
  - Cortex-debug を使用して Visual Studio Code IDE のサンプル ディレクトリを変更するための VBScript SetDebug for VSCode.vbs
  - デバッグの詳細については、PEAK-DevPack Debug Adapter の同梱ドキュメントを参照してください。



Hardware¥

サポートされているハードウェアのファームウェア例を含むサブディレクトリ。 独自のファームウェア開発を開 始する場合は、この例を使用してください。

PEAK-Flash¥

CAN 経由でファームウェアをハードウェアにアップロードするための Windows ソフトウェア

- LiesMich.txt と ReadMe.txt
   開発パッケージの操作方法に関するドイツ語と英語の短いドキュメント
- SetPath\_for\_VSCode.vbs
   Visual Studio Code IDE のサンプル ディレクトリを変更するための VBScript

#### 独自のファームウェアを作成する:

- 1. コンピューター上にフォルダーを作成します。ローカルドライブを使用することをお勧めします。
- 2. 開発パッケージ PEAK-DevPack.zip をフォルダーに完全に解凍します。インストールは必要ありません。
- 3. スクリプト SetPath\_for\_VSCode.vbs を実行します。このスクリプトは、Visual Studio Code IDE のサンプル ディレクトリを変更します。その後、各サンプル ディレクトリには、ローカル パス情報を含む必要なファイルを含む.vscode というフォルダーが作成されます。
- 4. Visual Studio コードを起動します。IDE は Microsoft から無料で入手できます。

https://code.visualstudio.com/

5. プロジェクトのフォルダーを選択して開きます。例えば:

d:¥PEAK-DevPack¥Hardware¥PCAN-RS-232¥Examples¥01 CAN ECHO

C コードを編集し、メニューの Terminal > Run Task を使用して、make clean、make all を呼び出すか、単 一ファイルをコンパイルすることができます。

- 6. make all を使用してファームウェアを作成します。 ファームウェアは、プロジェクト フォルダーの out サブデ ィレクトリにある \*.bin です。
- 7. 5.1.2 ハードウェアの準備の説明に従って、ファームウェアをアップロードするためにハードウェアを準備します。
- PEAK-Flash ツールを使用して、CAN 経由でファームウェアを PCAN-RS-232 にアップロードします。
   このツールは、メニューの Terminal > Run Task > Flash Device から起動するか、開発パッケージのサブディレクトリから起動します。5.1.3 ファームウェア転送 ではプロセスについて説明します。PCAN シリーズの CAN インターフェイスが必要です。



## 4.1 ライブラリ

PCAN-RS-232 用のアプリケーションの開発は、バイナリ ファイルであるライブラリ libPCAN-RS-232-GNU\*s.a (\* はバージョン番号を表します) によってサポートされています。このライブラリを使用して、PCAN-RS-232 の すべてのリソースにアクセスできます。ライブラリは、各サンプル ディレクトリの inc サブディレクトリにあるへ ッダー ファイル (\*.h) に文書化されています。

## 5 ファームウェアのアップロード

PCAN-RS-232 のマイクロコントローラーには、次の 2 つの異なる方法で新しいファームウェアを装備できます。

#### ■ CAN 経由 (推奨):

CAN チャネル経由で Windows ソフトウェア PEAK-Flash を使用すると、ファームウェアをコンピューターから PCAN-RS-232 に転送できます。

詳細については、5.1 CAN 経由でのファームウェアのアップロード を参照してください。

#### ■ シリアル接続経由:

これには、PCAN-RS-232の回路基板へのアクセスが必要です。

詳細については、5.2 シリアル接続経由でのファームウェアのアップロード を参照してください。

#### 5.1 CAN 経由でのファームウェアのアップロード

#### 5.1.1 システム要求

- コンピューター用の PCAN シリーズの CAN インターフェイス(PCAN-USB など)
- CAN インターフェイスと PCAN-RS-232 コンバータ間の CAN ケーブル配線。CAN バスの両端がそれぞれ 120Ω で正しく終端されています。
- オペレーティング システム Windows 11 (x64)、10 (x86/x64)
- 同じ CAN バス上の複数の PCAN-RS-232 コンバータを新しいファームウェアで更新する場合は、各コンバータ
   に ID を割り当てる必要があります。2.3 はんだ付けジャンパー を参照してください。



#### 5.1.2 ハードウェアの準備

CAN 経由で新しいファームウェアをアップロードするには、PCAN-RS-232 で CAN ブートローダーをアクティブに する必要があります。

#### CAN ブートローダーのアクティブ化:



注意! 静電気放電(ESD)により、カード上のコンポーネントを損傷または破壊する可能性があります。ESD を回避するための予防措置を講じてください。

- 1. PCAN-RS-232 を電源から外します。
- 2. Boot と電源 Ub の間の接続を確立します。



端子1と端子7の間をネジ端子台で接続

そのため、後で Boot 接続に High レベルが適用されます。

- コンバータの CAN バスを、コンピューターに接続された CAN インターフェイスに接続します。 CAN ケ ーブル (2 x 120Ω)の適切な終端に注意してください。
- 4. 電源を再接続します。

Boot 接続の High レベルにより、PCAN-RS-232 は CAN ブートローダーを開始します。これは、ステー タス LED がオレンジ色に速く点滅することで判断できます。



#### 5.1.3 ファームウェアの転送

新しいファームウェア バージョンを PCAN-RS-232 に転送できます。ファームウェアは、Windows ソフトウェア PEAK-Flash を使用して CAN バス経由でアップロードできます。

#### PEAK-Flash でファームウェアを転送します:

ソフトウェア PEAK-Flash は開発パッケージに含まれており、次のリンクからダウンロードできます: www.peak-system.com/quick/DLP-DevPack

- 1. zip ファイルを開き、ローカル ストレージ メディアに解凍します。
- 2. PEAK-Flash.exe を実行します。

PEAK-Flash のメインウィンドウが表示されます。

| PEAK-Flash 10/2020           | -                                                                                                                                                                                                      |     | ×    |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 1. Welcome                   | Welcome to PEAK-Flash.                                                                                                                                                                                 |     | Ċ.   |
| 2. Select Hardware           | <b>Step - Description</b><br>(1) - This page<br>(2) - Select the bardware which you would like to flash                                                                                                |     |      |
| 3. Select Firmware           | <ul> <li>(3) - Select a compatible firmware here (.bin-File)</li> <li>(4) - Review your selections and start the flash procedure</li> <li>(5) - Display of the flash procedure and progress</li> </ul> |     |      |
| 4. Ready to Flash            | (6) - Finish. Here you can choose between "New Flash Procedure" and "Exit".                                                                                                                            |     |      |
| 5. Flashing                  | Software-Information<br>Version: 1.1.1.188<br>© 2020 PEAK-System Technik GmbH<br>All rights reserved.                                                                                                  |     |      |
| 6. Finish                    | Embedded firmware files: Show<br>Web: https://www.peak-system.com                                                                                                                                      |     |      |
|                              | Support: support@peak-system.com                                                                                                                                                                       |     |      |
| © 2020 PEAK-System Technik G | mbH < Back Next >                                                                                                                                                                                      | Car | ncel |



3. Next ボタンをクリックします。

Select Hardware window が表示されます。

| PEAK-Flash 10/2020            |                                                                                                    |                 | -              | - 0                     | ×   |
|-------------------------------|----------------------------------------------------------------------------------------------------|-----------------|----------------|-------------------------|-----|
| 1. Welcome                    | Select Hardware<br>Please select the hardware to be flash                                          | ed.             |                |                         | \$  |
| 2. Select Hardware            | <ul> <li>Locally connected CAN/LIN-Interfaces</li> <li>Modules connected to the CAN-Bus</li> </ul> |                 |                |                         |     |
| 3. Select Firmware            | Channels of connected CAN hardware<br>PCAN-USB, Device ID: 2, Channel: 1                           |                 | ~              | Bit rate:<br>500 kbit/s | ~   |
| 4. Ready to Flash             | Detect                                                                                             |                 |                |                         |     |
| 5. Flashing                   | Name<br>PCAN-RS-232                                                                                | Module ID<br>15 | Fimware<br>2.3 | e Version               |     |
| 6. Finish                     | <                                                                                                  |                 |                |                         | >   |
| © 2020 PEAK-System Technik Gr | nbH                                                                                                | < Back          | lext >         | Cane                    | cel |

- 4. Modules connected to the CAN bus ラジオ ボタンをクリックします。
- 5. Channels of connected CAN hardware ドロップダウン メニューで、コンピューターに接続されている CAN インターフェイスを選択します。
- 6. ドロップダウン メニューの Bit rate で、nominal ビット レート 500 kbit/s を選択します。
- 7. Detect をクリックします。

リストには、PCAN-RS-232 がモジュール ID およびファームウェア バージョンとともに表示されます。そうでない場合は、適切な nominal ビット レートを備えた CAN バスへの適切な接続が存在するかどうかを確認します。



8. Next をクリックします。

Select Firmware window が表示されます。

| PEAK-Flash 10/2020            | - 0                                                                                                                                                      | × |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1. Welcome                    | Select Firmware Please select a firmware file.                                                                                                           | E |
| 2. Select Hardware            | Selected hardware: PCAN-RS-232<br>Current version: 2.3                                                                                                   |   |
| 3. Select Firmware            | Embedded Firmware                                                                                                                                        |   |
| 4. Ready to Flash             | Version:<br>Release date: n/a                                                                                                                            |   |
| 5. Flashing<br>6. Finish      | <ul> <li>● Firmware File: example_echo.bin</li> <li>Browse</li> <li>Version: unknown</li> <li>File date: 23.10.2020</li> <li>Compatibility: ✓</li> </ul> |   |
| © 2020 PEAK-System Technik Gr | mbH < Back Next > Cancel                                                                                                                                 |   |

- 9. Firmware File ラジオ ボタンを選択し、Browse をクリックします。
- 10. 対応するファイル(\*.bin)を選択します。
- Next をクリックします。
   Ready to Flash ダイアログが表示されます。
- 12. Start をクリックして、新しいファームウェアを PCAN-RS-232 に転送します。

Flashing ダイアログが表示されます。

- 13. プロセスが完了したら、Next をクリックします。
- 14. プログラムを終了できます。
- 15. PCAN-RS-232 を電源から外します。
- 16. Boot と電源 Ubの間の接続を取り外します。
- 17. PCAN-RS-232 を電源に接続します。

新しいファームウェアで PCAN-RS-232 を使用できるようになりました。

## 5.2 シリアル接続経由でのファームウェアのアップロード

このセクションでは、マイクロコントローラーのブートローダーをアクティブにする方法を説明します。実際のアッ プロードプロセスは、使用するサードパーティのアップロードソフトウェアによって異なるため、ここでは説明しま せん。

> 重要: RS-232 インターフェイス経由でファームウェアをアップロードすると、CAN ブートロー ダーが上書きされる可能性があります。その後、CAN 経由でファームウェアをアップロードする ことはできなくなります。

#### マイクロコントローラーのブートローダーをアクティブ化します:



短絡の危険があります! PCAN-RS-232 のはんだ付けは、資格のある電気工学担当者のみが実行 できます。



**注意!** 静電気放電(ESD)により、カード上のコンポーネントを損傷または破壊する可能性があります。ESD を回避するための予防措置を講じてください。

- 1. PCAN-RS-232 を電源から外します。
- 2. 2本のネジを外します。
- 3. ハウジングカバーを取り外します。
- 4. 回路基板を取り外します。

5. 希望の設定に従って、はんだブリッジ JP4 を基板にはんだ付けします。



Solder field statusPort statusデフォルト: ブートローダーは<br/>アクティブ化されていません。ブートローダーが有効化されています。

回路基板上のジャンパー JP4 による ブートローダーのアクティブ化

- 6. RS-232 端子 RxD (9) および TxD (10) を介して、コンピューターまたはプログラミング アダプタへのシリ アル接続を確立します。
- 7. 電源を再接続します。

マイクロコントローラーのポート **P0.14** の Low レベルにより、コンバータはシリアル送信用のブートロー ダーを開始します。LED は消灯したままになります。

- 8. 回路基板を挿入し、その上にハウジング カバーを置きます。
- 9.2本のネジを元の位置に戻します。



## 6 テクニカルデータ

| Connectors                       |                                            |
|----------------------------------|--------------------------------------------|
| Screw terminal block             | 10-pin, pitch 3.5 mm                       |
|                                  | Phoenix Contact MC 1.5/10-ST-3.5 - 1840447 |
|                                  |                                            |
| Digital Input (Din)              |                                            |
| Quantity                         | 1                                          |
| Туре                             | Low-active                                 |
| Switching thresholds             | Low $\rightarrow$ High: U > 1.2 V          |
|                                  | High $\rightarrow$ Low: U < 0.8 V          |
| Maximum level                    | Ub                                         |
|                                  |                                            |
| Digital Output (Dout)            |                                            |
| Quantity                         | 1                                          |
| Туре                             | Low-side driver                            |
| Maximum voltage at load          | 60 V                                       |
| Maximum output current           | 0.7 A                                      |
|                                  |                                            |
| Power supply                     |                                            |
| Supply voltage (U <sub>b</sub> ) | 8 to 30 V DC                               |
| Current consumption              | max. 70 mA at 12 V                         |



| CAN                   |                                                         |                             |  |
|-----------------------|---------------------------------------------------------|-----------------------------|--|
| Specification         | ISO 11898-2, High-Speed-CAN 2.0A/B                      |                             |  |
| Pit rotos             | 40 kbit/s ~ 1 Mbit/s (リクエストに応じてより低いビット レー               |                             |  |
| DitTates              | <b>۲</b> )                                              |                             |  |
| Transceiver           | NXP TJA1040T                                            |                             |  |
| Termination           | No termination                                          |                             |  |
|                       |                                                         |                             |  |
| Microcontroller       |                                                         |                             |  |
| CPU                   | NXP LPC2194/01                                          |                             |  |
| Clock frequency       | 60 MHz                                                  |                             |  |
| Add-on memory         | 32 kByte, EEPROM Atmel AT24C256B (via I <sup>2</sup> C) |                             |  |
| Firmware upload       | CAN 経由(PCAN インターフェースが必要)                                |                             |  |
|                       | シリアル接続経由                                                |                             |  |
|                       |                                                         |                             |  |
| Measures              |                                                         |                             |  |
| Size                  | Casing:                                                 | 68 x 57 x 21 mm (W x D x H) |  |
|                       | Circuit board:                                          | 51 x 54 mm (W x D)          |  |
| Weight                | 36 g                                                    |                             |  |
|                       |                                                         |                             |  |
| Environment           |                                                         |                             |  |
| Operating temperature | -40 $\sim$ +85 °C (-40 $\sim$                           | +185 °F)                    |  |

| Operating temperature                 | -40 105 0 (-40 1105 1 )                |
|---------------------------------------|----------------------------------------|
| Temperature for storage and transport | -40 $\sim$ +85 °C (-40 $\sim$ +185 °F) |
| Relative humidity                     | 15 to 90 %, not condensing             |

IP20

Ingress protection (IEC 60529)



| Conformity |                                               |
|------------|-----------------------------------------------|
| RoHS 2     | EU Directive 2011/65/EU (RoHS 2)              |
|            | EU Directive 2015/863/EU                      |
|            | DIN EN IEC 63000:2019-05; VDE 0042-12:2019-05 |
| EMV        | EU Directive 2014/30/EU                       |
|            | DIN EN 61326-1:2013-07; VDE 0843-20-1:2013-07 |

## 付録 A CE 証明書



## 付録 B UKCA 証明書





## 付録 C 寸法図





## 付録 D マイクロ コントローラのポートアサイン

次の表に、LPC2194/01 マイクロコントローラー (μC)の使用される入力と出力 (ポート)と、PCAN-RS-232 コンバ ータでのそれらの機能を示します。補足情報としての意味があります。コンバータの機能は、提供されたライブラリ によって実装されます。

LPC2194/01 マイクロコントローラーに関する追加情報は、NXP のホームページ(<u>www.nxp.com</u>) で入手してくだ さい。

| Port  | I/O  | μC Function | Signal    | Active (µC) | Function / Connection <sup>1</sup>            |
|-------|------|-------------|-----------|-------------|-----------------------------------------------|
| P0.0  | 0    | TxD UART0   | TxD0      |             | シリアル通信、送信、STB:10                              |
|       |      |             |           |             | (RS-232 levels)                               |
| P0.1  | I    | RxD UART0   | RxD0      |             | シリアル通信、受信、STB:9                               |
|       |      |             |           |             | (RS-232 levels)                               |
| P0.2  | I, O | SCL         | SCL       |             | Atmel AT24C256B EEPROM への I <sup>2</sup> C バス |
| P0.3  | I, O | SDA         | SDA       |             |                                               |
| P0.4  | I    | Port pin    | ID0       | High        |                                               |
| P0.5  | I    | Port pin    | ID1       | High        | ー<br>はんだ付けブリッジジャンパー (ID 0 ~ 3)、               |
| P0.6  | I    | Port pin    | ID2       | High        | ブリッジ = Low                                    |
| P0.7  | I    | Port pin    | ID4       | High        |                                               |
| P0.12 | 0    | Port pin    |           |             | Reserved                                      |
| P0.13 | I, O | Port pin    |           |             |                                               |
| P0.14 | I    | Port pin    | /Boot_ser | Low         | シリアルインターフェース経由でフラッシュ                          |
|       |      |             |           |             | を有効にする、JP4                                    |

<sup>1</sup> SKL:n ネジ端子台の端子 n

J4/5:n 回路基板上の各コネクタ パネルのピン n 回路基板上の JPx ジャンパー位置 (セット = アクティブ)



| Port          | I/O            | μC Function  | Signal    | Active (µC) | Function / Connection <sup>1</sup> |
|---------------|----------------|--------------|-----------|-------------|------------------------------------|
|               |                |              |           |             | CAN 経由で 500 kbit/s、STB:7 でフラッシ     |
| P0.15         | I              | Port pin     | /Boot_CAN | Low         | ュをアクティブ化 (High-active の配線のた        |
|               |                |              |           |             | め)                                 |
|               | 0              | Port pin     | V24_en    | High        | RS-232 コンポーネントを Low レベルで無          |
| P0.17         |                |              |           |             | 効にします (デフォルトでは有効)。 省エネ             |
|               |                |              |           |             | を可能にする。                            |
| D0 40         | I              | Port pin     | Switch    | High        | デジタル入力 Din、STB:6 (Low-active 配線の   |
| P0.19         |                |              |           |             | ため)                                |
| P0.22         | 0              | Port pin     | CAN_en_1  | Low         | CAN トランシーバーをアクティブにする <sup>2</sup>  |
| P0.25         | Ι              | RD1          | CAN_RxD   |             | CAN 受信                             |
| TD1           | 0              | TD1          | CAN_TxD   |             | CAN 送信                             |
| <b>D</b> 0.00 | I              | Analog input | V-Power1  |             | 電圧 Ub を測定、最大値 (0x03FF) は 33.1 V    |
| P0.28         |                |              |           |             | に相当します。                            |
| P0.29         | I              | Analog input |           |             | GND 上にあります。                        |
| P0.30         | I              | Analog input |           |             | 1.8 V (マイクロコントローラー電源) に接続          |
| P1.16         | 0 <sup>3</sup> | Port pin     |           | Low         | LED red                            |
| P1.17         | 0 <sup>3</sup> | Port pin     |           | Low         | LED green                          |
| D1 01         | 0              | Port pin     |           | Low         | デジタル出力 Dout、STB:5 (Low-side スイッ    |
| ۳۱.۷۱         |                |              |           |             | チ)                                 |

- 2 マイクロコントローラーをリセットすると、CAN トランシーバーは非アクティブ化されるため、
   使用するには再アクティブ化する必要があります。
- <sup>3</sup> 出力が非アクティブのときに LED がわずかに光る場合があります。これを防止したい場合は、 ファームウェアでポートのタイプを入力 (I) に変更する必要があります。LED を再びオンにする前に、 それぞれのポート タイプを出力 (O) に設定する必要があります。



| Port  | I/O | μC Function    | Signal | Active (µC) | Function / Connection <sup>1</sup> |
|-------|-----|----------------|--------|-------------|------------------------------------|
| P1.26 |     | JTAG Interface | RTCK   |             | Debugging, J5:9                    |
| P1.27 |     | JTAG Interface | TDO    |             | Debugging, J5:7                    |
| P1.28 |     | JTAG Interface | TDI    |             | Debugging, J5:8                    |
| P1.29 |     | JTAG Interface | ТСК    |             | Debugging, J5:5                    |
| P1.30 |     | JTAG Interface | TMS    |             | Debugging, J5:6                    |
| P1.31 |     | JTAG Interface | TRST   |             | Debugging, J5:10                   |



## 付録 E 廃棄

PCAN-RS-232 は家庭廃棄物として廃棄しないでください。PCAN-RS-232 は、地域の規制に従って適切に廃棄して ください。