

PCAN-Router DR

User Manual

関連商品

Product Name	Model	Part Number
PCAN-Router DR	Industry	IPEH-002213

インプリント

PCAN は PEAK-System Technik GmbH の登録商標です。

本書に記載されているその他すべての製品名は、それぞれの会社の商標または登録商標である場合があります。 明示 的に ™ または ® のマークが付いているわけではありません。

Copyright © 2023 PEAK-System Technik GmbH

本書の複製 (コピー、印刷、その他の形式) および電子配布は、PEAK-System Technik GmbH の明示的な許可がある 場合にのみ許可されます。PEAK-System Technik GmbH は、事前の発表なく技術データを変更する権利を留保します。 一般的なビジネス条件とライセンス契約の規定が適用されます。すべての権利は留保されています。

PEAK-System Technik GmbH Otto-Roehm-Strasse 69 64293 Darmstadt Germany Phone: +49 (0)6151 8173-20 Fax: +49 (0)6151 8173-29 www.peak-system.com info@peak-system.com

Document version 3.0.0 (2023-05-04)

目次

関	車商品	2
1:	ップリント	2
1	はじめに	5
	1.1 プロパティの概要	6
	1.2 提供範囲	7
	1.3 操作の前提条件	7
2 1	妾続と操作要素	8
	2.1 CAN1/CAN2	9
	2.2 RS-232	9
	2.3 電源	10
	2.4 接続のガルバニック絶縁	10
	2.5 ロータリースイッチ	11
	2.6 リセット押しボタン	11
3 /	ヽードウェア コンフィグレーション	12
	3.1 ビットレートのコンフィグレーション	12
	3.2 CAN Bootloader の起動	13
	3.3 内部終端	14
4 2	オペレーション	17
	4.1 最初のステップ	17
	4.2 リスタート	18
	4.3 信号遅延	19
	4.4 ステータス LED	19
5 3	虫自のファームウェアの作成	20
	5.1 ライブラリ	22
6	ファームウェアのアップロード	23
	6.1 システム要求	23
	6.2 ハードウェアの準備	24
	6.3 ファームウェアの転送	25

7 テクニカルデータ	
付録 A CE 証明書	
付録 B UKCA 証明書	
付録 C 寸法図	
付録 D 廃棄	

1 はじめに

PCAN-Router DR には 2 つの High-speed CAN チャネルがあります。ビットレートはデバイス前面のロータリース イッチで調整します。このモジュールは、接続された両方の CAN バス間でメッセージ トラフィックを 1:1 双方向 に転送します。

PCAN-Router DR のポートは、相互に絶縁され、少なくとも 500 V の電源からも絶縁されています。さらに、CAN 1 は、IEC 60601-1 に準拠した最大 5 kV の分離電圧を備えています。DIN レール ケースと拡張温度のサポートによ り、このモジュールは産業環境での使用に適しています。

アルミニウムケースの PCAN-Router と同様に、PCAN-Router DR は自由にプログラムできます。対応する開発パッケージが供給範囲に含まれます。

1.1 プロパティの概要

- NXP LPC21 シリーズ マイクロコントローラー (16/32 ビット ARM CPU)
- 32k バイト EEPROM
- 2つの High-speed CAN チャネル (ISO 11898-2)
 - CAN 仕様 2.0 A/B に準拠
 - ビットレートは 5 kbit/s から 1 Mbit/s まで、ロータリースイッチで調整可能
 - NXP PCA82C251 CAN トランシーバー
- プッシュボタンによるデバイスのリセット
- 各 CAN チャネルの切り替え可能な終端
- モジュールステータス、両方の CAN チャネル、および電源の LED によるステータス表示
- 4 極ネジ端子ストリップによる CAN、RS-232、および電源の接続 (Phoenix)
- CAN 1 は CAN 2、RS-232、および電源に対して最大 5 kV 絶縁されています (IEC 60601-1 に準拠)
- CAN 2 と RS-232 は相互および電源に対して 500 V で絶縁されています
- DIN レール (DIN EN 60715 TH35) に取り付けるためのプラスチック ケース (幅: 22.5 mm)
- 8~30Vの電源供給
- -40 ~ +85 °C (-40 ~ +185 °F)の拡張動作温度
- シリアルデータ転送用の RS-232 コネクタ (将来の使用のために予約されています)
- 新しいファームウェアは CAN インターフェイス経由でロード可能

1.2 提供範囲

- DIN レールのプラスチックケースに入った PCAN-Router DR
- 両方の CAN チャネル、RS-232、および電源用の嵌合コネクタ (Phoenix Contact MSTB 2.5/4-ST BK - 1756298)

ダウンロード

- Windows 用開発パッケージ:
 - GCC ARM Embedded
 - フラッシュプログラム
 - プログラミング例
- マニュアル (PDF)

1.3 操作の前提条件

- DC8~30Vの電源
- CAN 経由でファームウェアをアップロードする場合:
 - PCAN シリーズのコンピューター用 CAN インターフェイス(例えば: PCAN-USB)
 - オペレーティング・システム Windows 11 (x64)、10 (x86/x64)

2 接続と操作要素

PCAN-Router DR の接続と操作要素

2.1 CAN1/CAN2

CAN コネクタは筐体の上側にあります。

CAN Connector (Phoenix)	Pin	Function
	1	CAN_High
$\underbrace{\circ \circ \circ \circ}$	2	CAN_Low
1 2 3 4	3	CAN GND
	4	CAN Shield

2.2 RS-232

RS-232 コネクタは筐体の下側にあります。

CAN Connector (Phoenix)	Pin	Function
	1	GND
\cdots	2	RxD
	3	not connected
1 2 3 4	4	TxD

2.3 電源

電源の接続は筐体の下側にあります。

CAN Connector (Phoenix)	Pin	Function
	1	GND
$\overset{\circ}{-}\overset{\circ}{-}\overset{\circ}{-}\overset{\circ}{-}$	2	not connected
	3	V _{bat} (8 - 30 V)
1234	4	Shield

2.4 接続のガルバニック絶縁

ガルバニック絶縁

PCAN-Router DR のポートは、相互に絶縁され、少なくとも 500 V の電源からも絶縁されています。さらに、CAN 1 は、IEC 60601-1 に準拠した最大 5 kV の分離電源を備えています。

2.5 ロータリースイッチ

PCAN-Router DR のロータリー スイッチを使用して、CAN ビット レートを設定し、CAN ブートローダーをアクテ ィブにすることができます。選択したビット レートは両方の CAN チャネルに適用されます。

ビット レートの設定については、3.1 ビット レートのコンフィグレーション で説明します。

CAN ブートローダーの有効化については、3.2 CAN Bootloader の起動 で説明します。

2.6 リセット押しボタン

リセット ボタンは、PCAN-Router DR の前面にある小さな穴の後ろにあります。

リセット ボタンを使用して、PCAN-Router DR を再起動できます。

アプリケーションについてはセクション 4.2 リスタート で説明します。

3 ハードウェア コンフィグレーション

3.1 ビットレートのコンフィグレーション

PCAN-Router DR のロータリースイッチを使用して、CAN ビットレートを調整できます。選択したビット レートは 両方の CAN チャネルに適用されます。出荷時、スイッチは C (500 kbit/s) に設定されています。変更した設定は、 PCAN-Router DR のリセット後に有効になります。

リセットの実行については、4.2 リスタート で説明されています。

Rotary Switch	Switch Position	Bit Rate
	0 (left)	5 kbit/s
	1	10 kbit/s
	2	20 kbit/s
	3	33.3 kbit/s
\bigcirc - CAN 2 $\overleftarrow{0}$	4 (top)	47.6 kbit/s
	5	50 kbit/s
Reset	6	83.3 kbit/s
4	7	95.2 kbit/s
	8 (right)	100 kbit/s
	9	125 kbit/s
• · · · · · ·	А	200 kbit/s
Bitrate	В	250 kbit/s
Power	C (bottom)	500 kbit/s
	D	800 kbit/s
	E	1 Mbit/s
	F	CAN-Bootloader

3.2 CAN Bootloader の起動

ロータリー スイッチの位置 F では、リセット後に CAN ブートローダーがアクティブになります。これにより、独 自に作成したファームウェアを CAN 経由で PCAN-Router DR に転送できるようになります。アップロード手順に ついては、6 ファームウェアのアップロード で詳しく説明します。

ロータリー スイッチの位置 F (CAN ブートローダーのアクティブ化用)

CAN ブートローダーがアクティブになると、LED は次の状態を示します。

LED	Status
Status	オフ
CAN 1	オレンジ色に点滅
CAN 2	オレンジ色がオン

3.3 内部終端

各 CAN チャネルの終端は、ボード上のスイッチを使用して個別にアクティブ化できます。出荷時には終端はオフに なっています。High-speed CAN バス (ISO 11898-2) は、ケーブルの両端を 120Ω で終端する必要があります。そう でない場合は、誤動作が発生する可能性があります。

終端抵抗 PCAN-Term(IPEK-003002)または PCAN-MiniTerm(IPEK-003002-Mini)を使用して、 CAN ケーブルの終端を行うことをお勧めします。これにより、CAN ノードを柔軟にバスに接続す ることができます。

内部終端を有効にします:

注意! 静電気放電(ESD)は、カード上のコンポーネントを損傷または破壊する可能性があります。ESD を回避するための予防措置を講じてください。

- 1. PCAN-Router DR への電源供給を切断します。
- マイナスドライバーを使用して、筐体の上部と下部にあるラッチの凹みに軽く押し込みます。
 ラッチのロックが解除されます。

PCAN-Router DR 側面図

3. 筐体の前面を基板ごと引き抜きます。

回路基板の入った筐体を開く

4. 希望の設定をする。

下図は、スイッチ term.CAN-1 の位置を示しています。CAN-1 と term. CAN-2 です。下の表は、設定可能な項 目です。

注: 内部終端をアクティブにするには、各スイッチ ブロックの両方のスイッチをオンに設定する 必要があることに注意してください。

CAN チャネルを終端するために回路基板のスイッチをオンにします

CAN Connector	Switching Block	Off (default)	Active
CAN 1	term. CAN-1	内部終端なし	CAN_L と CAN_H 間 120Ω
CAN 2	term. CAN-2	内部終端なし	CAN_L と CAN_H 間 120Ω

5. 筐体を前にしてボードを筐体のガイド スロットに再度挿入します。

6. カチッと音がしてスナップロックがかかるまで、筐体の両半分を押し込みます。

4 オペレーション

PCAN-Router DR は、それぞれのコネクタに電源電圧を印加することで起動します。接続の詳細については、2 接続 と操作要素 を参照してください。その後、フラッシュ メモリ内のファームウェアが実行されます。

PCAN-Router DR には、納品時に 2 つのチャネル間で CAN メッセージを 1:1 で転送する標準ファームウェアが付属しています。ロータリースイッチで選択したビットレートが使用されます。CAN メッセージが受信されると、それ ぞれの CAN チャネルの LED ステータス表示がグリーン色とオレンジ色の間で変化します。

ファームウェアに関する情報は、5 独自のファームウェアの作成 を参照してください。

4.1 最初のステップ

- 1. PCAN-Router DR を DIN レールの上部に吊り下げて底部にはめ込み、DIN レールの適切な位置に取り付けます。
- 2. 2つの CAN ポートをそれぞれ、対応する CAN ネットワークに接続します。

ビット レートがデフォルトの 500 kbit/s と異なる場合は、ロータリー スイッチを使用してビット レートを 設定します (3.1 ビット レートのコンフィグレーション を参照)。

新しいビットレートはリセット後に有効になります(4.2 リスタート を参照)。

3. PCAN-Router DR を電源 (8 ~ 30 V DC) に接続します。

PCAN-Router DR は CAN メッセージを 1 対 1 で転送するようになりました。

4.2 リスタート

再起動する場合は、リセットボタンをペーパークリップなどで押します。また、電源の接続を解除して再接続することも可能です。

4.3 信号遅延

CAN メッセージの転送時の信号遅延は、約 30µs のマイコンの固定処理時間と、メッセージの長さやビットレートによる変動遅延で構成されています。

たとえば、11 ビット ID と 8 データ バイトを持つ CAN メッセージの信号遅延は、500 kbit/s で約 260 µs です。

4.4 ステータス LED

出荷時には標準ファームウェアがプリインストールされています。したがって、CAN メッセージの送受信時には、LED CAN 1 と CAN 2 がグリーンとレッドの間で点灯します。

LED は次の状態を示すことができます:

LED	Status	Meaning
Status	オフ	CAN 通信なし
	グリーン色の点滅	稼働中
	レッド点滅	Reset
CAN 1/CAN 2	グリーン色の点滅	データが送信される
	レッド点滅	通信エラー(エラーフレーム)
Power	グリーンが点灯	電源が存在します

さらに、ブートローダーがアクティブ化されるとオレンジ色に点灯します。追加の LED 機能は独自のファームウェ アでプログラムできます。詳細については、提供されているプログラミング例を参照してください。

5 独自のファームウェアの作成

PEAK-DevPack 開発パッケージを利用すると、PEAK-System のプログラマブル ハードウェア製品に対応した固有のファームウェアをプログラムできます。サポートされている製品ごとに例が含まれています。

PCAN-Router DR には、納品時に両方の CAN チャネル間で CAN メッセージを 1:1 で転送する標準ファームウェ アが付属しています。

システム要求:

- オペレーティング システム Windows 11 (x64)、10 (x86/x64) を搭載したコンピューター
- CAN 経由でファームウェアをハードウェアにアップロードするための PCAN シリーズの CAN インターフェイス

開発パッケージのダウンロード:

www.peak-system.com/quick/DLP-DevPack

パッケージの内容:

Build Tools Win32¥

Windows 32 ビットのビルド プロセスを自動化するツール

■ Build Tools Win64¥

Windows 64 ビットのビルド プロセスを自動化するツール

Compiler¥

サポートされているプログラマブル製品のコンパイラ

- Debug¥
 - デバッグをサポートするハードウェア用の OpenOCD およびコンフィグレーション・ファイル
 - Cortex-debug を使用して Visual Studio Code IDE のサンプル ディレクトリを変更するための VBScript SetDebug_for_VSCode.vbs
 - デバッグの詳細については、PEAK-DevPack デバッグ アダプターの同梱ドキュメントを参照してください。

Hardware¥

サポートされているハードウェアのファームウェア例を含むサブディレクトリ。独自のファームウェア開発を開始 する場合は、この例を使用してください。

PEAK-Flash¥

CAN 経由でファームウェアをハードウェアにアップロードするための Windows ソフトウェア

LiesMich.txt と ReadMe.txt

開発パッケージの操作方法に関するドイツ語と英語の短いドキュメント

SetPath_for_VSCode.vbs

Visual Studio Code IDE のサンプル ディレクトリを変更するための VBScript

独自のファームウェアを作成する:

- 1. コンピューター上にフォルダーを作成します。ローカルドライブを使用することをお勧めします。
- 2. 開発パッケージ PEAK-DevPack.zip をフォルダーに完全に解凍します。インストールは必要ありません。
- 3. スクリプト SetPath_for_VSCode.vbs を実行します。このスクリプトは、Visual Studio Code IDE のサンプル ディレクトリを変更します。その後、各サンプル ディレクトリには、ローカル パス情報を含む必要なファイルを含む、vscode というフォルダーが作成されます。
- Visual Studio コードを起動します。 IDE は Microsoft から無料で入手できます:
 https://code.visualstudio.com
- 5. プロジェクトのフォルダーを選択して開きます。例えば:

d:¥PEAK-DevPack¥Hardware¥PCAN-Router_DR¥Examples¥01_ROUTING

C コードを編集し、メニューの Terminal > Run Task を使用して、make clean、make all を呼び出すか、単一フ ァイルをコンパイルすることができます。

- 6. make all でファームウェアを作成します。ファームウェアは、プロジェクト フォルダーの out サブディレクトリ にある *.bin です。
- 7. 6.2 ハードウェアの準備の説明に従って、ファームウェアをアップロードするためにハードウェアを準備します。

8. PEAK-Flash ツールを使用して、ファームウェアを CAN 経由で PCAN-Router DR にアップロードします。 このツールは、メニューの Terminal > Run Task > Flash Device から起動するか、開発パッケージのサブディレク トリから起動します。6.2 ハードウェアの準備 でプロセスについて説明します。PCAN シリーズの CAN インター フェイスが必要です。

5.1 ライブラリ

PCAN-Router DR 用のアプリケーションの開発は、バイナリファイルであるライブラリ libPCAN-RouterDRGNU*ys.a (* はバージョン番号を表します) によってサポートされています。このライブラリを使用して、PCAN-Router DR の すべてのリソースにアクセスできます。 ライブラリは、 各サンプル ディレクトリの inc サブディレクトリにあるヘッ ダー ファイル (*.h) に文書化されています。

6 ファームウェアのアップロード

PCAN-Router DR には、CAN 経由の新しいファームウェアと Windows プログラム PEAK-Flash が装備されていま す。そのためには、PCAN-Router DR の前面にあるロータリー スイッチを経由してブートローダーをアクティブに する必要があります。

6.1 システム要求

- コンピューター用の PCAN シリーズの CAN インターフェイス (PCAN-USB など)
- CAN インターフェイスと PCAN-Router DR 間の CAN ケーブル配線。CAN バスの両端がそれぞれ 120 Ω で 正しく終端されています。
- オペレーティング システム Windows 11 (x64/ARM64)、10 (x86/x64)

6.2 ハードウェアの準備

CAN 経由で新しいファームウェアをアップロードするには、PCAN-Router DR で CAN ブートローダーをアクティ ブにする必要があります。これは、PCAN-Router DR の前面にあるロータリー スイッチを使用して行われます。

CAN ブートローダーをアクティブ化します:

1. ロータリースイッチの現在の設定をメモしておき、F(0より1ノッチ下)にします。

2. ペーパークリップなどでリセットボタンを押すか、電源を短時間遮断して、PCAN-Router DR を再起動します。

ロータリースイッチの変更が有効になります。

3. アクティブな CAN ブートローダーは次のように表示されます:

LED	Status
Status	オフ
CAN 1	オレンジ色に点滅
CAN 2	<mark>オレンジ</mark> 色がオン

4. 6.3 ファームウェアの転送 に進みます。

6.3 ファームウェアの転送

ファームウェアのアップロードは、Windows ソフトウェア PEAK-Flash を使って CAN バス経由で行い、CAN 1 コネ クタでのみ可能です。これは、コンピューターに単独で接続する必要があります。

PEAK-Flash でファームウェアを転送する:

ソフトウェア PEAK-Flash は開発パッケージに含まれており、以下のリンクからダウンロードすることができます: www.peak-system.com/quick/DLP-DevPack

- 1. zip ファイルを開き、ローカル ストレージ メディアに解凍します。
- 2. PEAK-Flash.exe を実行します。

PEAK-Flash のメインウィンドウが表示されます。

👌 PEAK-Flash 12/2022	-		×
1. Welcome	Welcome Welcome to PEAK-Flash.	÷	\$
2. Select Hardware	Step - Description (1) - This page (2) - Select the hardware which you would like to flash		
3. Select Firmware	 (3) - Select a compatible firmware here (.bin-File) (4) - Review your selections and start the flash procedure (5) - Display of the flash procedure and progress 		
4. Ready to Flash	(6) - Finish. Here you can choose between "New Flash Procedure" and "Exit".		
5. Flashing			
6. Finish			
	Software-Information Version: 1.5.5.532 (32 bit) © 2022 PEAK-System Technik GmbH All rights reserved. Show third-party licenses Show embedded firmware files Web: https://www.peak-system.com Support: support@peak-system.com		
© 2022 PEAK-System Technik Gr	nbH < Back Next >	Cance	el

3. ボタン Next をクリックします。

Select Hardware Window が表示されます。

👌 PEAK-Flash 12/2022			- 0	×
1. Welcome	Select Hardware Please select the hardware to be fla	ished.		✿
2. Select Hardware	Modules connected to the CAN bus Locally connected CAN/LIN interface	s :es		
3. Select Firmware	Channels of connected CAN hardware PCAN-USB, Device ID: 14h			¥
4. Ready to Flash	Bit rate: 500 kbit/s Change			
5. Flashing	Detect			
6. Finish	Hardware name	Module ID	Firmware version	
	PCAN-Router DR	15	2.4	
© 2022 PEAK-System Technik G	mbH [< Back	Next > Ca	ncel

- 4. Modules connected to the CAN bus ラジオボタンをクリックします。
- 5. ドロップダウンメニュー Channels of connected CAN hardware で、コンピューターに接続されている CAN イ ンターフェイスを選択します。
- 6. ドロップダウンメニューの Bit rate で、nominal ビットレート 500kbit/s を選択します。
- 7. Detect をクリックします。

リストに、PCAN-Router DR がモジュール ID およびファームウェアのバージョンとともに表示されます。表示 されない場合は、適切な nominal ビットレートで CAN バスに正しく接続されているかどうかを確認します。

8. Next をクリックします。Select Firmware window が表示されます。

- 9. Firmware File ラジオ ボタンを選択し、Browse をクリックします。
- 10. 対応するファイル(*.bin)を選択します。
- 11. Next をクリックします。Ready to Flash ダイアログが表示されます。
- 12. Start をクリックして、新しいファームウェアを PCAN-Router DR に転送します。 Flashing ダイアログが表示されます。
- 13. プロセスが完了したら、Next をクリックします。
- 14. プログラムを終了できます。
- 15. ロータリー スイッチを前に記録した位置、または別の必要な位置に回します。
- 16. PCAN-Router DR を再起動します。
- 新しいファームウェアで PCAN-Router DR を使用できるようになりました。

7 テクニカルデータ

Connectors	
Power	Phoenix connector 4-pin ¹
CAN channel 1 and 2	2 x Phoenix connector 4-pin ¹
RS-232	Phoenix connector 4-pin ¹

¹ Phoenix connector, type MSTB 2.5/4-ST BK, order no. 1756298

CAN			
Protocols	CAN 2.0 A/B		
Physical	transmission ISO 11898-2, High-	speed-CAN	
Transceiver	NXP PCA82C251		
CAN bit rates	Nominal: 5 kbit/s to 1 Mbit/s		
Controller	Internal CAN controller		
Supported clock frequencies	60 MHz		
Supported bit timing values		Nominal	
	Prescaler (BRP)	1 to 1024	
	Time Segment 1 (TSEG1)	1 to 16	
	Time Segment 2 (TSEG2)	1 to 8	
	Synch. Jump Width (SJW)	1 to 4	
	CAN1 は CAN2、RS-232、およ	、び電源に対して最大 5 kV 絶縁	
Galvanic isolation	されています (IEC 60601-1 に準拠)		
	CAN 2 と RS-232 は相互および電源に対して 500 V で絶縁され		
	ています		
Internal termination	CAN チャネルごとに切り替え可能、出荷時は無効		
Listen-only mode	プログラム可能。 納品時にアクティベートされていない		
CAN メッセージルーティングの信号遅延	nominal ビット レート 500 kbit	/s で 11 ビット ID と 8 デー	
	タ バイトの CAN メッセージの)場合、約 260 µs	

RS-232	
Bit rate max.	115200 Baud
Signal level max.	±14 V
Galvanic isolation	RS-232 is isolated
	- CAN 2 および電源に対して 500 V
	- CAN 1 に対して 5 kV
Power Supply	
Operating voltage	DC8~30V
Supply type	外部供給
Current consumption	Max. 223 mA、無負荷時 typ. 110 mA at 12 V
Protection	±1 kV サージプロテクション
	-60 V 逆極性プロテクション
	±4 kV ESD プロテクション
Microcontroller backup supply	none
Power saving modes	none
Microcontroller	
CPU	LPC2194 (based on Arm® ARM7TDMI-S CPU)
Clock frequency	60 MHz
Voltages	Core: 1.8 V; I/O: 3.3 V
RAM	128 kByte SDRAM
Firmware upload	CAN 経由 (PCAN インターフェイスが必要)
Measures	
Size	22.5 x 99 x 114.5 mm (W x H x D)
Weight	101 g

Environment	
Operating temperature	-40 to +85 °C (-40 to +185 °F)
保管および輸送時の温度	-55 to +125 °C (-67 to +257 °F)
相対湿度	15 to 90 %, not condensing
保護等級 (IEC 60529)	IP20
Conformity	
Pous 2	EU directive 2011/65/EU (RoHS 2) + 2015/863/EU
	DIN EN IEC 63000:2019-05
EMC	EU directive 2014/30/EU
EWG	DIN EN 61326-1:2022-11

付録 A CE 証明書

付録 B UKCA 証明書

付録 C 寸法図

付録 D 廃棄

PCAN-Router DR は家庭廃棄物として廃棄しないでください。PCAN-Router DR は、地域の規制に従って適切に廃棄してください。