

PCAN-USB

User Manual

関連商品

Product Name	Model	Part Number
PCAN-USB		IPEH-002021
PCAN-USB opto-decoupled	CAN インターフェイスのガルバニック絶縁	IPEH-002022

表紙の写真は、両方の製品を示しています。赤の PCAN-USB と、灰色のケーブルストレインリリーフ付きの PCAN-USB opto-decoupled です。

インプリント

PCAN ®は、PEAK-System Technik GmbH の登録商標です。CiA®は、Automation e.V における CAN の登録コミュニティ商標です。

本書に記載されているその他すべての製品名は、それぞれの会社の商標または登録商標である可能性があります。 "™" または "®" で明示的にマークされていません。

Copyright © 2022 PEAK-System Technik GmbH

このドキュメントの複製(コピー、印刷、またはその他のフォーム)および電子配布は、PEAK-System Technik GmbH の明示的な許可がある場合にのみ許可されます。PEAK-System Technik GmbH は、事前の発表なしに技術データを変更する権利を留保します。一般的なビジネス条件とライセンス契約の規制が適用されます。すべての権利は留保されています。

PEAK-System Technik GmbH Otto-Roehm-Strasse 69 64293 Darmstadt Germany

Phone: +49 (0)6151 8173-20 Fax: +49 (0)6151 8173-29

www.peak-system.com info@peak-system.com

Document version 3.0.2 (2022-10-24)

目次

関]連商品	2
1	インプリント	2
1	はじめに	4
	1.1 プロパティの概要	5
	1.2 システム要件	6
	1.3 提供範囲	
2	設定	7
	2.1 外部デバイスの電圧供給	7
	2.2 内部終端	11
3	インストール	13
	3.1 デバイス・ドライバーのセットアップをインストールする	13
	3.2 CAN インターフェイスの接続	14
	3.3 運用準備の確認	14
4 (CAN バスの接続	15
	4.1 D-Sub コネクタを経由した接続	15
	4.2 配線	16
	4.3 Windows でのアプリケーション例	17
5 :	操作	
	5.1 ステータス LED	18
	5.2 USB 接続の取り外し	18
	5.3 複数の PCAN-USB インターフェイスを区別する	
6	CAN モニター PCAN-View	
	6.1 CAN インターフェイスの初期化	20
	6.2 CAN メッセージの送信	
	6.3 追加のタブ	
7 /	API PCAN-Basic	
	7.1 PCAN-Basic の特徴	
	7.2 API の主な説明	
8	技術仕様	
	オ錄 B 寸法図	
	 録 C クイックリファレンス	
	対録 D Linux	
1.3	J⊅↑ ┗ EIIUA	

1 はじめに

PCAN-USB インターフェイスにより、CAN ネットワークに簡単に接続することができます。プラスチック製のコンパクトな筐体は、モバイルアプリケーションに適しています。光絶縁タイプは、PC と CAN 側との間で最大 500 V の電気的絶縁を保証しています。

CAN 接続のアプリケーションを開発するためのモニターソフトウェア PCAN-View とプログラミング・インターフェイス PCAN-Basic は、提供範囲に含まれており、CAN FD をサポートしています。

さまざまな OS に対応したデバイス・ドライバーが用意されているため、接続された CAN バスにプログラムから簡単にアクセスできます。

本マニュアルでは、Windows での CAN インターフェイスの使用方法について説明します。 Linux 用のデバイス・ドライバーとアプリケーション情報は以下を参照下さい:

www.peak-system.com/quick/DL-Driver-E

このマニュアルの最後には、PCAN-USB インターフェイスのインストールと操作に関する簡単な情報が記載されたクイックリファレンスがあります。

1.1 プロパティの概要

- USB 接続用 CAN インターフェイス (USB 1.1、USB 2.0、USB 3.0 に対応したフルスピードモード)
- High-speed CAN 接続(ISO 11898-2)
- CAN 仕様 ISO 11898-1 に準拠。
- 5 kbit/s から 1 Mbit/s までのビットレートに対応。
- タイムスタンプ分解能 42 µs
- NXP CAN コントローラー SJA1000、クロック周波数 16 MHz
- NXP CAN トランシーバー PCA82C251
- CAN 接続のガルバニック絶縁は最大 500 V(PCAN-USB opto-decoupled のみ)
- CAN ターミネーションは、はんだ付けジャンパーで有効にすることができます。
- CAN 接続への 5V 電源は、はんだ付けジャンパーで接続可能 (例: 外部バス・コンバーター用)
- USB 経由での電圧供給
- 動作温度: -40~+85 °C (-40~+185 °F)

1.2 システム要件

コンピューターと

- オペレーティング・システム Windows[®] 11 (64 ビット)、Windows[®] 10 (32/64 ビット) または Linux (32/64 ビット)。
- USB ポート (USB1.1、USB2.0、USB3.0) または
- セルフパワー型 USB ハブの空き USB ポート

1.3 提供範囲

■ PCAN-USB

ダウンロード

- Windows[®] 11(64 ビット),Windows[®] 10(32/64 ビット),Linux(32/64 ビット)用デバイス・ドライバー
- CAN モニター PCAN-View for Windows
- CAN 接続のアプリケーションを開発するためのプログラミング・インターフェイス PCAN-Basic
- 自動車業界の標準的なプロトコルに対応するプログラミング・インターフェイス

2 設定

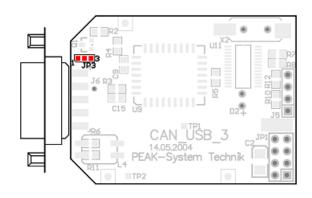
外部機器の電源と内部終端の設定について以下に説明します。これらの設定が必要ない場合は、この章をスキップしてください。

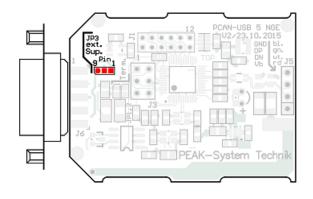
2.1 外部デバイスの電圧供給

オプションで、外部電源は、D-Sub コネクタのピン 1 および/またはピン 9 のはんだブリッジを使用して D-Sub コネクタを経由して接続できます。これにより、Low-speed CAN 用の PCAN-TJA1054 バス・コンバーターなどの外部デバイスに 5VDC の電圧を供給することができます。ピン 1 とピン 9 は出荷時に割り当てられておらず、PCAN-USB opto-decoupled では、ピン 1 のみが S /N199999 まで使用可能です。

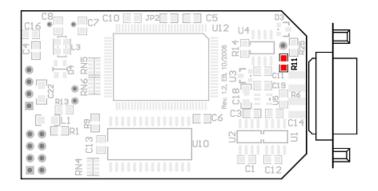
CAN インターフェイスの opto-decoupled モデルには、相互接続された DC/DC コンバーターが含まれています。したがって、電流出力は 50mA に制限されます。

2.1.1 電源の起動

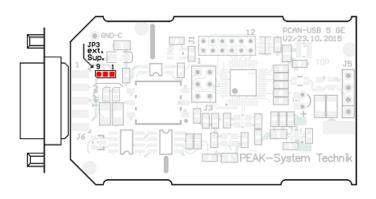

短絡の危険があります! CAN インターフェイスでのはんだ付けは、資格のある電気工学担当者の みが実行できます。


注意! 静電気放電 (ESD) は、カード上のコンポーネントを損傷または破壊する可能性があります。 ESD を回避するための予防措置を講じてください。

- 1. CAN インターフェイス・ケーシングを開きます。マイナス・ドライバーで両側のラッチを慎重に押します。
- 2. 回路基板を取り外します。
- 3. PCAN-USB のモデルに従って、回路基板上の目的の位置にはんだブリッジを設定します(以下を参照)。
- 4. 組み立てには、回路基板をハウジングの上半分に配置します。ストレインリリーフと LED は、対応するくぼみにある必要があります。
- 5. ラッチがかみ合うまで、ハウジングの下半分をハウジングの上半分に押し付けます。



S / N 199999 までの PCAN-USB (IPEH-002021)、ソルジャーフィールド JP3



S / N 200000 以降の PCAN-USB(IPEH-002021)、 ソルジャーフィールド JP3

S / N 199999 までの PCAN-USB opto-decoupled (IPEH-002022)、ソルジャーフィールド R11

S / N 200000 からの PCAN-USB opto-decoupled (IPEH-002022)、ソルジャーフィールド R3

PCAN-USB model	Solder field	D-Sub コネクタ	タの 5 ボルト電源	亰	
		Without (default)	Pin 1	Pin 9	Pin 1 and pin 9
IPEH-2021 S/N 199999 まで	JP3				
IPEH-2021 S/N 200000 から	JP3				
IPEH-2022 (opto-dec.) S/N 199999 まで	R11			適用されない	適用されない
IPEH-2022 (opto-dec.) S/N 200000 から	JP3				

注意! 外部デバイスの電圧供給は個別に保護されていません。したがって、CAN ケーブルまたは周辺システムを接続および切断する前に、コンピューターの電源を切ってください。一部のコンピューターは、電源がオフになっている場合でも USB ポートに電力を供給していることを考慮してください(スタンバイ操作)。

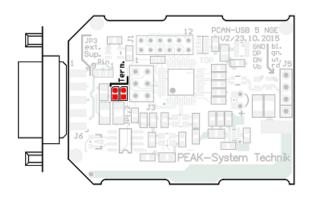
2.2 内部終端

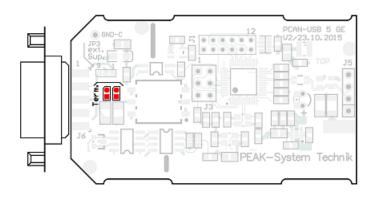
S/N 200000 以降のみ適用

内部終端は、回路基板上のはんだ付けジャンパーで起動し、CAN バスの一端を終端することができます。納品時には、 終端は有効になっていません。

ヒント: CAN ケーブルは、終端抵抗 PCAN-Term (IPEK-003002) または PCAN-MiniTerm (IPEK-003002-Mini) などにより終端することをお勧めします。これにより、CAN ノードを柔軟にバスに接続することができます。

2.2.1 内部終端の有効化


短絡の危険があります! CAN インターフェイスでのはんだ付けは、資格のある電気工学担当者の みが実行できます。


注意! 静電気放電 (ESD) は、カード上のコンポーネントを損傷または破壊する可能性があります。 ESD を回避するための予防措置を講じてください。

- 1. CAN インターフェイス・ケーシングを開きます。マイナス・ドライバーで両側のラッチを慎重に押します。
- 2. 回路基板を取り外します。
- 3. PCAN-USB のモデルに従って、回路基板上の目的の位置にはんだブリッジを設定します(次ページを参照)。
- 4. 組み立てには、回路基板をハウジングの上半分に配置します。ストレインリリーフと LED は、対応するくぼみにある必要があります。
- 5. ラッチがかみ合うまで、ハウジングの下半分をハウジングの上半分に押し付けます。

S / N 199999 までの PCAN-USB(IPEH-002021)、 CAN バス終端用のはんだフィールド

S / N 200000 からの PCAN-USB opto-decoupled (IPEH-002022)、CAN バス終端用のはんだフィールド

PCAN-USB model	High-speed CAN バスの 120Q 終端抵抗	
	なし (デフォルト)	有効
IPEH-2021		
S/N 200000 から		
IPEH-2022 (opto-dec.)		
S/N 200000 から		

3 インストール

この章では、Windows での PCAN-USB インターフェイスのソフトウェア・セットアップと、CAN インターフェイスのコンピューターへの接続について説明します。

注:Linux へのインストールについては、付録 D Linux を参照してください。

CAN インターフェイスを接続する前に、ドライバーをインストールしてください。

3.1 デバイス・ドライバーのセットアップをインストールする

- 1. 当社の Web サイトからデバイス・ドライバーのセットアップをダウンロードします。 www.peak-system.com/quick/DL-Driver-E
- 2. ファイル PEAK-System_Driver-Setup.zip を解凍します。
- 3. ファイル PeakOemDrv.exe をダブルクリックします。 ドライバーのセットアップが開始されます。
- 4. プログラムの指示に従います。

3.2 CAN インターフェイスの接続

故障! CAN インターフェイスをコンピューターに接続するために USB 延長ケーブルを使用しないでください。延長ケーブルは USB 仕様に準拠していません。

1. CAN インターフェイスをコンピューターまたは接続された USB ハブの USB ポートに接続します。コンピューターの電源を入れたままにすることができます。

Windows は新しいハードウェアを検出し、ドライバーのインストールを完了します。

2. CAN インターフェイスのLED を確認します。LED が点灯している場合、ドライバーは正常に初期化されています。

3.3 運用準備の確認

- 1. Windows のスタート・メニューを開きます。
- Peak Settings と入力し、 Enter を押します。
 Peak Settings ウィンドウが表示されます。
- CAN ハードウェアを選択します。
 接続されている CAN インターフェイスが表示されます。

4 CAN バスの接続

4.1 D-Sub コネクタを経由した接続

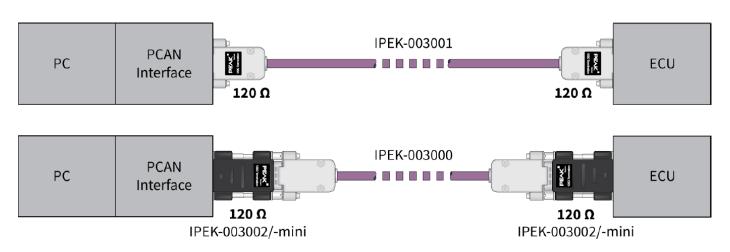
CAN インターフェイスを接続した後、CAN バスを D-Sub コネクタに接続できます。CAN のピン割り当ては、CiA®106の仕様に対応しています:

Assignment	Pin	D-Sub plug
CAN_V+ (optional)	1, 9	- 1 2 3 4 5
CAN_Low	2	1 2 3 4 3
CAN_High	7	
CAN_GND	3, 6	6 7 8 9
Not connected	4, 5, 8	- 0,00

バス・コンバーターなどの低電力デバイスには、CAN コネクタのピン 1 とピン 9 に 5 ボルトを直接供給することができます。ピン 1 および、ピン 9 は、出荷状態では使用されていません。詳細については、セクション 2.1 外部デバイスの電圧供給を参照してください。

ヒント:バス・コンバーターを経由して、CAN バスを異なる伝送規格に接続します。PEAK-System は、ISO11898-3 に準拠した Low-speed CAN バス用の PCAN-TJA1054 などのさまざまなバスコン バータモジュールを提供しています。

4.2 配線


4.2.1 終端処理

High-speed CAN バス (ISO 11898-2) は、両端を 120 Ωで終端する必要があります。

終端処理は干渉信号の反射を防ぎ、接続された CAN ノード(CAN インターフェイス、コントロール・デバイス)のトランシーバーの正常な動作を保証します。

S/N 199999 までの PCAN-USB インターフェイスは、内部終端を持ちません。S/N 200000 からは、オプションで 120 Ω の内部終端があります。起動に関する情報は、前のセクション 2.2 内部終端を参照してください。

4.2.2 接続例

PCAN Interface とコントロールユニット(ECU)の接続例です。上の例は、両端が 120 Ωで終端されたケーブルによる接続です。下の例では、終端アダプタを使用して接続されています。

4.2.3 最大バス長

最大バス長は、主にビットレートによって異なります。

Nominal bit rate		Bus length	
1	Mbit/s	40	m
500	kbit/s	110	m
250	kbit/s	240	m
125	kbit/s	500	m
50	kbit/s	1.3	km
20	kbit/s	3.3	km
10	kbit/s	6.6	km
5	kbit/s	13	km

記載されている値は、理想的なシステムに基づいて計算されたものであり、実際とは異なる場合があります。

4.3 Windows でのアプリケーション例

CAN インターフェイスにアクセスするためのサンプルアプリケーションとして、Windows のスタート・メニューから CAN モニターの PCAN-View を実行します。

5 操作

5.1 ステータス LED

LED は次の状態になります。

Status	Meaning
On	オペレーティング・システムのドライバーへの接続があります。
ゆっくり点滅	ソフトウェア・アプリケーションが CAN インターフェイスに接続されています。
速く点滅	データは接続された CAN バスを経由して送信されます。

5.2 USB 接続の取り外し

PCAN-USB インターフェイスは、これ以上操作することなく、コンピューターから取り外すことができます。Windowsでは、インターフェイスは "Safely Remove Hardware" (ハードウェアの安全な取り外し)の下に表示されません。

5.3 複数の PCAN-USB インターフェイスを区別する

1台のコンピューターで同時に複数の PCAN-USB インターフェイスを操作できます。プログラム PCAN-View を使用すると、ソフトウェア環境で CAN インターフェイスを区別するためにデバイス ID を割り当てることができます。

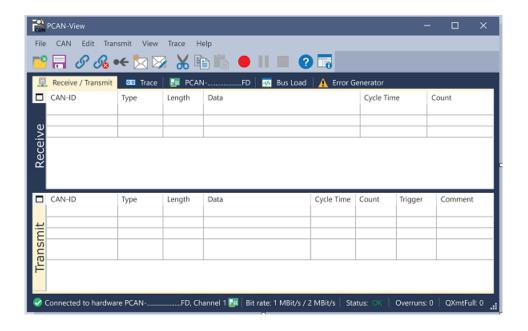
6 CAN モニター PCAN-View

CAN モニターPCAN-View は、CAN および CAN FD メッセージを表示、送信、および記録するための Windows ソフトウェアです。このソフトウェアは、Windows でのデバイス・ドライバー・パッケージのインストールとともにインストールされます。

次項では、CAN インターフェイスの初期化を例として説明します。

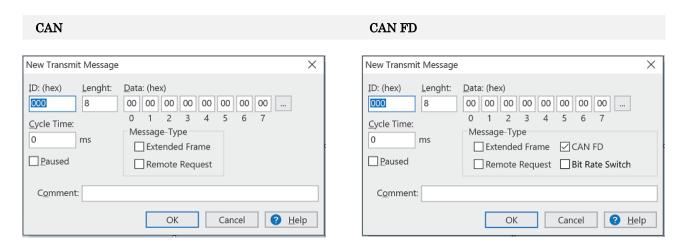
PCAN-View の使用に関する詳細情報は、メニュー項目 Help の下のプログラムウィンドウにあります。

6.1 CAN インターフェイスの初期化


Windows の スタート・メニューからプログラム PCAN-View を開きます。
 CAN インターフェイスに応じて、CAN FD の設定の有無にかかわらず 接続 ダイアログが表示されます。

CAN CAN FD PCAN-View PCAN-View 🕇 CAN Setup 🦞 Acceptance Filter 🖹 Options 🕆 CAN Setup 🦞 Acceptance Filter 🖾 Options Available PCAN <u>b</u>ardwar ← PCAN-[PRODUCT]: Gerate-ID FFh → PCAN-[PRODUCT] FD: Device ID 251181Fh Mode: ISO CAN FD Select Frequency: 20 MHz Mode: CAN (SJA1000) US Clock Frequency: 8 MHz Oatabase Entry: 🌟 1 Mbit/s tit Rate Dreset IX None Bit Rate [kbit/s]: 1000 Nominal Bit Rate-Database Erroy: 🍁 1 Mbit/s Prescaler: 1 Bus Timing Register 0: 00 Bit Rate (kbit/s): 1000 Bus Timing Register 1: 14 Sample Point [%]: 75,0 . 12 Sample Count: 1 Prescaler: 5 Sample Point tq 125 ms 125 m 8 250 m 4 250 m 4 75 % 62 % 50 % 75 % 50 % 75 % 62 % Database Entry 🌟 2 Mbit/s ± 00h 14h 14h 23h 32h 01h 10h 14h 00h 00h 01h 01h 40h 40h Bit Rate (ktbit/st: 2000) Sample Point [%] 80.0 - B SSP Offset. B 125 ns 8 Prescaler: 2 125 ns 8 OK Cancel 2 Help OK Cancel O Help

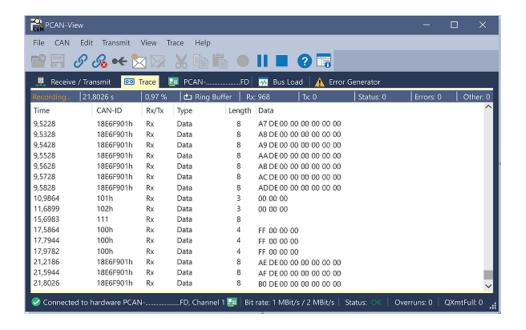
- 2. CAN インターフェイスが複数ある場合は、希望するインターフェイスを選択します。複数のチャネルがある場合は、リストから希望するチャネルを選択します。
- 3. 接続する CAN バスに応じたビットレート等を設定します。
- 4. OK をクリックしてエントリを確認します。メインウィンドウが表示され、Receive / Transmit タブが表示されます。


5. 別のチャネルや CAN インターフェイスを初期化するには、PCAN-View の別のインスタンスを開いてください。

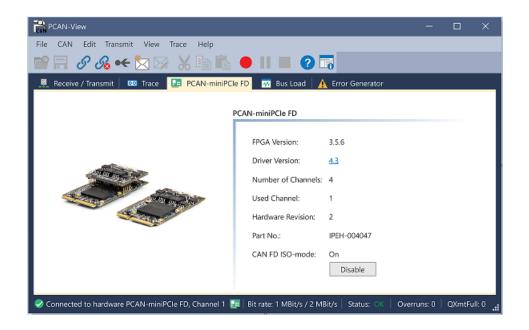
6.2 CAN メッセージの送信

1. メニューコマンド Transmit / New Message を選択します。

CAN インターフェイスに応じて、CAN FD の設定の有無にかかわらずダイアログボックス New Transmit Message が表示されます。


- 1. メッセージの ID、長さ、およびデータを入力します。接続されている CAN バスに応じて他の設定を行うことができます。
- 2. Cycle Time フィールドに値を入力して、手動または定期的なメッセージ送信を選択します。 定期的に送信するには、0 より大きい値を入力してください。 手動でのみ送信するには、値 0 を入力します。
- OK をクリックしてエントリを確認します。
 作成された送信メッセージが Receive / Transmit タブに表示されます。
- 4. メッセージを手動で送信するには、メニューコマンド Transmit > Send を選択するか、 space バーを押します。 手動送信プロセスは、定期的に送信される CAN メッセージに対して追加で実行されます。

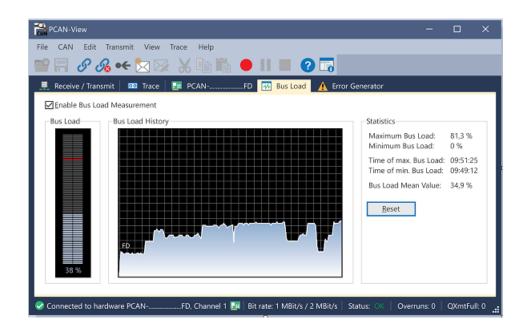
6.3 追加のタブ


CAN インターフェイスに応じて、追加のタブを使用できます。

6.3.1 Trace タブ

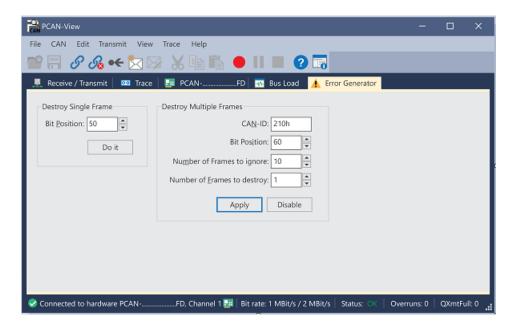
トレーサー(データロガー)は、CAN バスの通信をリニアまたはリングバッファモードで記録します。トレース・データはファイルに保存できます。

6.3.2 CAN-Interface タブ



CAN-Interface タブには、ハードウェアと使用されている Windows デバイス・ドライバーに関する情報が表示されます。この場合、PCAN-miniPCle FD の例です。CAN インターフェイスに応じて、同じタイプの複数のインターフェイスを区別するためにハードウェア ID を決定できます。CAN FD とのインターフェイスの場合、ハードウェアのデフォルトとして "ISO" または "Non-ISO" に従った送信を設定できます。

6.3.3 Bus Load タブ


※この機能は PCAN-USB ではサポートされておらず、PCAN-USB FD 等の FD 対応モデルでのみの機能です。

Bus Load タブには、現在のバス負荷、その時間履歴、および接続されている CAN チャネルの統計情報が表示されます。

6.3.4 Error Generator タブ

Error Generator タブにより、テスト環境または CAN バスの開発中に、6 つの連続したドミナントビットにより、CAN バスの通信が制御不能になることがあります。これは、CAN バスのプロトコル違反であり、接続された CAN ノードによってエラーとして認識されなければなりません。

注: Error Generator は、経験豊富なユーザーと開発環境でのみ使用する必要があります。詳細については、カスタマーサポートにお問い合わせください: support@peak-system.com

Error Generator を使用して CAN フレームを破棄するには、次の2つの方法のいずれかを使用します。

- アクティベーション後に1回
- CAN ID に関連する特定の間隔で繰り返し

Destroy Single CAN Frame

Destroy Single Frame 領域は、アクティブ化後にプラグインカードによって認識される次の CAN フレームを指します。

- 1. CAN フレームでエラーが生成される Bit Position を入力します。Bit Position は識別子の後に開始する必要があります。カウントにはスタッフ・ビットが含まれます。
- 2. Do it で破棄アクションを実行します。

次に Received または Transmitted される CAN フレームは、選択した Bit Position で破棄されます。

Destroy Multiple CAN Frames

- 1. 複数回破壊することを目的とした CAN フレームの CAN ID を入力します。以下の仕様はこの ID を参照しています。
- 2. CAN フレームでエラーが生成される Bit Position を入力します。Bit Position は識別子の後に開始する必要があります。カウントにはスタッフ・ビットが含まれます。
- 3. CAN メッセージが破棄される前に無傷で送信される場合は、無視するフレーム数を指定します。
- 4. 破棄するフレーム数を決定します。
- 5. 入力内容を Apply で確認して、エラージェネレータをアクティブにします。
- 6. Disable でそれ以上の CAN フレームの破壊を停止します。

7 API PCAN-Basic

PCAN-Basic の使用目的には、ライセンス権の遵守が必要です。次のエンドユーザーの使用許諾契約書をお読みください:

https://www.peak-system.com/quick/eula

プログラミング・インターフェイス(API)PCAN-Basic は、PEAK-System の CAN-Interface に独自のプログラムを接続するための基本的な機能を提供します。PCAN-Basic は、プログラムとデバイス・ドライバー間のインターフェイスです。Windows オペレーティング・システムではこれは DLL(Dynamic Link Library)であり、Linux オペレーティング・システムでは SO(Dynamic Shared Object)です。PCAN-Basic は、オペレーティング・システム間で互換性があるように設計されています。ソフトウェア・プロジェクトは、サポートされているシステム間でほとんど労力をかけずに移植できます。

Windows にデバイス・ドライバー・パッケージをインストールすると、API PCAN-Basic の DLL ファイルがシステム フォルダーに配置されます。すべての一般的なプログラミング言語の例、およびライブラリとヘルプファイルは、www.peak-system.com/quick/DL-Develop-E からダウンロード・パッケージとして入手できます。

Linux の場合、API のダウンロードはこのリンクから入手できます。PCAN-Basic を使用するには、SocketCAN でのアクセスができないため、chardev ドライバーを含む別のドライバー・パッケージが必要です。"Driver Package for Proprietary Purposes"、ユーザーマニュアル、および実装の詳細については、 www.peak-system.com/linux を参照してください。

7.1 PCAN-Basic の特徴

- CAN および CAN FD 接続のアプリケーションを開発するためのスレッドセーフな API を提供
- CAN および CAN FD の CAN 仕様 ISO 11898-1 をサポート
- サポートするオペレーティング・システム:
 - Windows® 11 (64 ビット)、10 (32/64 ビット)
 - Linux (32/64 ビット)
- 複数の PEAK-System アプリケーションと独自のアプリケーションを物理チャネルで同時に操作可能
- Single DLL (Win) / SO (Linux)で、サポートされるすべての種類のハードウェアに対応
- 各ハードウェアタイプで最大 16 チャネルまで使用可能
- チャネル間の簡単な切り替え
- PCAN-LAN デバイスタイプ経由で PCAN-Gateway の CAN チャネルにアクセス可能
- Windows 環境で CAN チャネルあたり最大 32,768 の CAN メッセージをドライバー内部でバッファリング
- 1 µs までの受信メッセージのタイムスタンプの精度 (使用する PEAK CAN インターフェイスによって異なります)
- PEAK-System の CAN 用 v1.1 および CAN FD アプリケーション用 v2.0 のトレース・フォーマットをサポート
- Listen-only モードなどの特定のハードウェア・パラメータへのアクセス
- メッセージを受信したときの Windows イベントによるアプリケーションの通知
- CAN エラーフレームのサポート
- CAN エコーフレームによる物理的な送信の確認
- デバッグ操作用の拡張システム
- 多言語デバッグ出力
- 出力言語はオペレーティング・システムによって異なります
- デバッグ情報は個別に定義できます

7.2 API の主な説明

CAN インターフェイスにアクセスするシーケンスは、次の3つのフェーズに分かれています:

初期化について

CAN チャネルは、使用する前に初期化する必要があります。CAN の場合は CAN_Initialize、CAN FD の場合は CAN_InitializeFD という関数を呼び出すだけで、初期化が行われます。この API では、CAN インターフェイスの種類 ごとに、最大 16 個の CAN チャネルを同時に使用することができます。初期化が成功すると、CAN チャネルは準備完 了となります。それ以上のコンフィギュレーションステップは必要ありません。

相互作用

メッセージの送受信には、初期化モードに応じて、CAN_Read、CAN_Write、CAN_ReadFD、CAN_WriteFD という 関数が使用できます。また、特定の CAN ID に限定するメッセージフィルターの設定や、CAN コントローラーを Listen-only モードに設定するなどの追加設定も可能です。

CAN メッセージの受信については、アプリケーション(クライアント)に自動的に通知するイベントを設定することができます。これにより、以下のような利点があります:

- アプリケーションが定期的に受信メッセージを確認する必要がない(ポーリングがない)。
- 受信時の応答時間が短縮されます。

完了

通信を終了するには、関数 CAN_Uninitialize が呼び出され、CAN チャネルの予約済みリソースなどが解放されます。 さらに、CAN チャネルは "Free" としてマークされ、他のアプリケーションから利用可能になります。

8 技術仕様

Connectors	
Computer	USB plug type A
CAN	D-Sub (m), 9 pins
	仕様 CiA®106 に従ったピン割り当て S/N 199999 までは USB 1.1、S/N 200000 から USB 2.0、
USB	Full-Speed モード (USB 1.1、USB 2.0、および USB 3.0)
	と互換性があります

CAN		
Protocols on OSI layer 2	CAN ISO 11898-1:2015, 2.0	
Physical transmission, OSI layer 1	ISO 11898-2 (High-speed CAN)	
CAN Bit rates	Nominal:	5 kbit/s to 1 Mbit/s
Controller	NXP SJA1000	
Transceiver	NXP PCA82C251	
Galvanic isolation	PCAN-USB:	none
Garvanic isolation	PCAN-USB opto:	最大 500V
D-Sub pin 1 / pin 9 を経由した外部	PCAN-USB:	5 V, max. 100 mA
デバイスへの供給	PCAN-USB opto ¹ :	5 V, max. 50 mA
		(納品時にアクティブ化されていない)
	S/N 199999 までは利用できません、S/N 200000 からはんだブ	
Internal termination	リッジ経由、納品時にアクティブ化されていません。	
Time stamp resolution	42 μs	

¹S/N 200000 以降のピン 9 のみ

Power supply	
Supply voltage	+5 V DC(USB ポート経由)
Power consumption	max. 200 mA

Measures		
Size (w/o cable)	PCAN-USB:	75 x 43 x 22 mm
	'PCAN-USB opto:	87 x 43 x 22 mm
Length (connection cable)	approx. 0.75 m	
Weight (with cable)	PCAN-USB:	78 g
Weight (With Cable)	,PCAN-USB opto:	83 g

Environment	
Operating temperature	-40 - 85 ℃ / -40 - 185 ℉
Temperature for storage and transport	-40 - 100 ℃ / -40 - 212 ℉
Relative humidity	15 – 90 %, not condensing
Ingress protection (IEC 60529)	IP20

Conformity	
RoHS	EU Directive 2011/65/EU (RoHS 2) + 2015/863/EU DIN EN IEC 63000:2019-05
EMC	EU Directive 2014/30/EU DIN EN 55032:2022-08 DIN EN 55035:2018-04

付録 A CE 証明書

EU Declaration of Conformity

This declaration applies to the following product:

Product name: PCAN-USB
Item number(s): IPEH-002021/22

Manufacturer: PEAK-System Technik GmbH

Otto-Roehm-Strasse 69 64293 Darmstadt Germany

 ϵ

We declare under our sole responsibility that the mentioned product is in conformity with the following directives and the affiliated harmonized standards:

EU Directive 2011/65/EU (RoHS 2) + 2015/863/EU (amended list of restricted substances) DIN EN IEC 63000:2019-05;VDE 0042-12:2019-05

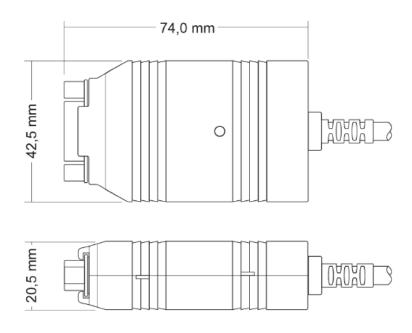
Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances (IEC 63000:2016); German version EN 63000:2018

EU Directive 2014/30/EU (Electromagnetic Compatibility)

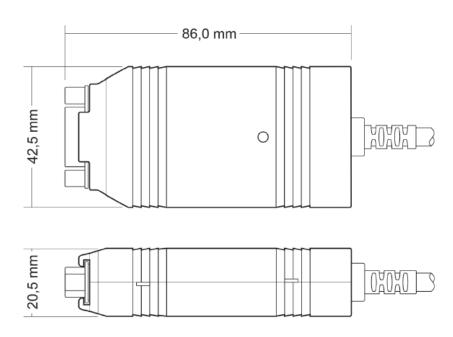
DIN EN 55024:2016-05; VDE 0878-24:2016-05

Information technology equipment – Immunity characteristics – Limits and methods of measurement (CISPR 24:2010 + Cor.:2011 + A1:2015); German version EN 55024:2010 + A1:2015

DIN EN 55032:2016-02;VDE 0878-32:2016-02


Electromagnetic compatibility of multimedia equipment - Emission Requirements (CISPR 32:2015); German version EN 55032:2015

Darmstadt, 17 August 2021


Uwe Wilhelm, Managing Director

付録 B 寸法図

PCAN-USB

PCAN-USB opto-decoupled

付録 C クイックリファレンス

Windows でのソフトウェア/ハードウェアのインストール

ホームページ(www.peak-system.com/quick/DL-Driver-E)から、デバイス・ドライバーのインストールパッケージを ダウンロードしてください。CAN インターフェイスをインストールする前に、ドライバーをインストールしてください。

ドライバーのインストール後、コンピューターの USB ポートまたは接続された USB ハブに CAN インターフェイスを接続します。新しいハードウェアが Windows によって認識され、ドライバーが初期化されます。その後、インターフェイスの LED が点灯します。

動作確認を行います。Windows のスタート・メニューを開きます。Peak Settings と入力し、 Enter を押します。 PEAK Settings ウィンドウが表示されます。接続された USB インターフェイスが CAN ハードウェアの下に表示されます。

Windows でのスタートアップ

CAN インターフェイスにアクセスするためのサンプルアプリケーションとして、Windows のスタート・メニューから CAN モニター PCAN-View を実行します。CAN インターフェイスの初期化には、希望する CAN チャネルと CAN ビットレートを選択します。

Status LED

Status	Meaning
On	オペレーティング・システムのドライバーへの接続があります。
ゆっくり点滅	ソフトウェア・アプリケーションが CAN インターフェイスに接続されています。
速く点滅	データは接続された CAN バスを経由して送信されます。

High-speed CAN connector (D-Sub, 9 pins)

Assignment	Pin	D-Sub plug
CAN_V+ (optional)	1, 9	- 1 2 3 4 5
CAN_Low	2	
CAN_High	7	
CAN_GND	3, 6	6 7 8 9
Not connected	4, 5, 8	- 0 7 0 9

付録 D Linux

カーネルのバージョンによっては、PEAK-System の CAN インターフェイス用のデバイス・ドライバーがすでにオペレーティング・システムに含まれています。CAN インターフェイスはネットワーク・デバイス(SocketCAN、netdev)として扱われます。SocketCAN のドキュメントは、https://www.kernel.org/doc/Documentation/networking/can.txt で見ることができます。

grep PEAK_ /boot/config-`uname -r` コマンドは、利用可能なドライバーをリストアップします。次の表は、 PCAN-Interfaces と、それらがサポートされているカーネルバージョンを示しています。

PCAN-Interface			Kernel version	
PCAN-PCI	PCAN-PCI Express	PCAN-miniPCI	≥ 3.2	
PCAN-PC/104-Plus	PCAN-PCI/104-Express			
PCAN-USB	PCAN-USB Pro	PCAN-ExpressCard	≥ 3.4	
PCAN-PCI Express	PCAN-miniPCIe			
PCAN-PCI/104-Express			≥ 3.7	
PCAN-USB FD	PCAN-USB Pro FD		≥ 4.0	
PCAN-Chip USB			≥ 4.11	
PCAN-PCI Express FD			≥ 4.12	
PCAN-PCI/104-Express FD	PCAN-miniPCIe FD	PCAN-Chip PCIe FD	≥ 4.12	
PCAN-M.2				
PCAN-Chip PCIe			≥ 4.3	
PCAN-USB X6			≥ 4.9	

PCAN-Interface に必要なドライバーが存在し、ロードされているかどうかは、次のコマンドで確認できます: |smod | grep ^peak check. 初期化が成功した場合、応答行は peak usb または peak pci で始まります。

必要なドライバーが一覧にない場合は、 "Driver Package for Proprietary Purposes" をインストールしてください。 ダウンロード、ドライバーのユーザーマニュアル、および、対応する "Implementation Details" は、次の場所にあります: www.peak-system.com/linux

また、PCAN-Basic、libpcan、libpcanfd など、chardev ドライバーをベースにした API を使用する場合にもこのドライバー・パッケージが必要です。